Developmental changes in methylation of spermatogenesis–specific genes include reprogramming in the epididymis (original) (raw)

References

  1. Cedar, H. DNA methylation and gene activity. Cell 53, 3–4 (1988).
    Article CAS PubMed Google Scholar
  2. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Devel. 6, 705–714 (1992).
    Article CAS PubMed Google Scholar
  3. McCarrey, J.R. Development of the germ cell. In Cellular and Molecular Biology of the Testis. (eds L. Ewing & C. Desjardins) 58–89 (Oxford University Press, New York, 1993).
    Google Scholar
  4. Ariel, M., McCarrey, J. & Cedar, H. Methylation patterns of testis-specific genes. Proc. natn. Acad. Sci. U.S.A. 88, 2317–2321 (1991).
    Article CAS Google Scholar
  5. McCarrey, J.R. et al. Differential transcription of Pgk genes during spermatogenesis in the mouse. Develop. Biol. 153, 160–168 (1992).
    Article Google Scholar
  6. Monesi, V. Ribonucleic acid and protein synthesis during differentiation of male germ cells in the mouse. Archs Anat. microsc. morph. Exp. 56 (suppl. 3/4), 61–74 (1967).
    CAS Google Scholar
  7. Singer-Sam, J., LeBon, J.M., Tanguay, R.L. & Riggs, A.D. A quantitative Hpall-PCR assay to measure methylation of DNA from a small number of cells. Nucl. Acids Res. 18, 687–692 (1990).
    Article CAS PubMed PubMed Central Google Scholar
  8. Benoit, J. Recherches anatomiques, cytologiques et histophyslologiques sur les voles excretrices du testicule chez les mammif ores. Arch. Anat. Histol. Embryol. (Strasb). 5, 175–412 (1926).
    Google Scholar
  9. Monk, M., Boubelik, M. & Lehnert, S. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371–382 (1987).
    CAS PubMed Google Scholar
  10. Sanford, J., Forrester, L., Chapman, V., Chandley, A. & Hastie, N. Methylation patterns of repetitive DNA sequences in germ cells of Mus musculus. Nucl. Acids Res. 12, 2823–2836 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  11. Gebara, M.M. & McCarrey, J.R. Protein-DNA interactions associated with the onset of testis-specific expression of the mammalian Pgk-2 gene. Molec. cell. Biol. 12, 1422–1431 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  12. Robaire, B. & Hermo, L. in The Physiology of Reproduction (eds Knobil, E. et al.) 999–1080 (Raven, New York, 1988).
    Google Scholar
  13. Orgebin-Crist, M.-C. & Olson, G.E. Epididymal sperm maturation. in The Male in Farm Animal Reproduction (ed. Courot, M.) 80–102 (Martinus Nijhoff, Amsterdam, 1984).
    Google Scholar
  14. Hamilton, D.W. in Frontiers in Reproduction and Fertililty Control Part 2 (eds Greep, R.O. & Koblinsky. M.A.) 411–426 (MIT, Cambridge, 1977).
    Google Scholar
  15. Bedford, J.M. in Handbook of Physiology. Sect. 7, Bol. V (eds Hamilton, D.W. & Greep, R.O.) 303 (American Physiological Soc. Washington D.C, 1975).
    Google Scholar
  16. Shemer, R., Walsh, A., Eisenberg, S., Breslow, J.L. & Razin, A. Tissue specific expression and methylation of the human apolipoprotein A1 gene. J. biol. Chem. 265, 1010–1015 (1990).
    CAS PubMed Google Scholar
  17. Walsh, A., Ito, Y. & Breslow, J.L. High levels of human apolipoprotein A-1 in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3 . J. biol. Chem. 264, 6488–6494 (1989).
    CAS PubMed Google Scholar
  18. Rosner, M.H. et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345, 686–692 (1990).
    Article CAS PubMed Google Scholar
  19. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).
    Article CAS PubMed Google Scholar
  20. DeChiara, T.M., Robertson, E.J. & Efstradiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).
    Article CAS PubMed Google Scholar
  21. Barlow, D.P., Stoger, R., Herrmann, B.G., Saito, K. & Schweifer The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).
    Article CAS PubMed Google Scholar
  22. Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature 351, 153–155 (1991).
    Article CAS PubMed Google Scholar
  23. Chaillet, J.R., Vogt, T.F., Beier, D.R. & Leder, P. Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell 66, 77–83 (1991).
    Article CAS PubMed Google Scholar
  24. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).
    Article CAS PubMed Google Scholar
  25. Brandeis, M. et al. The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J. 12, 3669–3677 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  26. McCarrey, J.R., Hsu, K.C., Eddy, E.M., Klevecz, R.R. & Bolen, J.L. Isolation of viable mouse primordial germ cells by antibody-directed flow sorting. J. exp. Zool. 242, 107–111 (1987).
    Article CAS PubMed Google Scholar
  27. Hahnel, A.C. & Eddy, E.M. Cell surface markers of mouse primordial germ cells defined by two monoclonal antibodies. Gamete Res. 15, 25–34 (1986).
    Article Google Scholar
  28. Bellve, A.R. et al. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell Biol. 74, 68–85 (1977).
    Article CAS PubMed PubMed Central Google Scholar
  29. Romrell, L.J., Bellve, A.R. & Fawcett, D.W. Separation of mouse spermatogenic cells by sedimentation velocity. Devl. Biol. 49, 119–131 (1976).
    Article CAS Google Scholar
  30. Ben-Shushan, E., Pikarshy, E., Klar, A. & Bergman, Y. Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast cell hybrid is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Molec. cell. Biol. 13, 891–901 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  31. Okazawa, H. et al. The oct3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. EMBO J. 10, 2997–3005 (1991).
    Article CAS PubMed PubMed Central Google Scholar

Download references