Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes (original) (raw)

References

  1. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).
    Article CAS Google Scholar
  2. Burke, A.C., Nelson, C.E., Morgan, B.A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).
    CAS Google Scholar
  3. Lewis, E. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).
    Article CAS Google Scholar
  4. Akam, M. Hox genes and the evolution of diverse body plans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 349, 313–319 (1995).
    Article CAS Google Scholar
  5. Nelson, J. Fishes of the World 1–600 (John Wiley & Sons Inc., New York, 1994).
  6. Tyler, J., Osteology, phylogeny and higher classification of the fishes of the order Plectognathii (Tetraodontiformes). NOAA Tech. Rept. NMFS Circ. 434, 1–122 (1980).
    Google Scholar
  7. Pollock, R.A., Sreenath, T., Ngo, L. & Bieberich, C.J. Gain of function mutations for paralogous hox genes — implications for the evolution of hox gene-function. Proc. Natl. Acad. Sci. USA 92, 4492–4496 (1995).
    Article CAS Google Scholar
  8. Pollock, R.A., Jay, G. & Bieberich, C.J. Altering the boundaries of Hox3.1 expression: evidence for antipodal gene regulation. Cell 71, 911–23 (1992).
    Article CAS Google Scholar
  9. Horan, G. et al. Compound mutants for the paralogous Hoxa-4, Hoxb-4, and Hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev. 9, 1667–1677 (1995).
    Article CAS Google Scholar
  10. Jegalian, B.G. & De, R.E. Homeotic transformations in the mouse induced by overexpression of a human Hox3.3 transgene. Cell 71, 901–910 (1992).
    Article CAS Google Scholar
  11. Nonchev, S. et al. The conserved role of krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc. Natl. Acad. Sci (USA) 93, 9339–9345 (1996).
    Article CAS Google Scholar
  12. Marshall, H., et al. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370, 567–571 (1994).
    Article CAS Google Scholar
  13. Aparicio, S. et al. Detecting conserved regulatory elements with the model genome of the Japanese puffer fish, Fugu rubripes. Proc. Natl. Acad. Sci. USA 92, 1684–1688 (1995).
    Article CAS Google Scholar
  14. Popperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031–1042 (1995).
    Article CAS Google Scholar
  15. Brenner, S. et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366, 265–268 (1993).
    Article CAS Google Scholar
  16. Graham, A., Papalopulu, N. & Krumlauf, R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57, 367–378 (1989).
    Article CAS Google Scholar
  17. Zeltser, L., Desplan, C. & Heintz, N. Hoxb-13 — a new hox gene in a distant region of the hoxb cluster maintains colinearity. Development 122, 2475–2484 (1996).
    CAS PubMed Google Scholar
  18. Duboule, D. Guidebook to the Homeobox Genes. 284(Oxford University Press, Oxford, 1994).
  19. Vanderhoeven, R., Sordino, P., Fraudeau, N., Izpisuabelmonte, J.C. & Duboule, D. Teleost hoxd and hoxa genes — comparison with tetrapods and functional evolution of the hoxd complex. Mech. Dev. 54, 9–21 (1996).
    Article CAS Google Scholar
  20. Garciafernandez, J. & Holland, P. Archetypal organization of the amphioxus Hox gene-cluster. Nature 370, 563–566 (1994).
    Article CAS Google Scholar
  21. Misof, B.Y. & Wagner, G.P. Evidence for 4 Hox clusters in the killifish fundulus-heteroclitus (teleostei). Mol. Phylogenet. Evol. 5, 309–322 (1996).
    Article CAS Google Scholar
  22. Misof, B.Y., Blanco, M.J. & Wagner, G.P. PCR-survey of Hox-genes of the zebrafish — new sequence information and evolutionary implications. J. Exp. Zool. 274, 193–206 (1996).
    Article CAS Google Scholar
  23. Scott, M.P. Vertebrate homeobox gene nomenclature. Cell 71, 551–553 (1992).
    Article CAS Google Scholar
  24. Pendleton, J., Nagai, B.K., Murtha, M.T. & Ruddle, F.H. Expansion of the Hox gene family and the evolution of chordates. Proc. Natl. Acad, Sci. USA 90, 6300–6304 (1993).
    Article CAS Google Scholar
  25. Acampora, D. et al. The human HOX gene family. Nucl. Acids Res. 17, 10385–10402 (1989).
    Article CAS Google Scholar
  26. Altschul, S., Gish, W., Miller, M., Myers, E.W. & Lipman, D.J. A basic local alignment search tool. J. Molec. Biol. 215, 403–410 (1990).
    Article CAS Google Scholar
  27. Church, G. & Gilbert, W., Genome sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).
    Article CAS Google Scholar
  28. Thompson, J., Higgins, D.G. & Gibson, T.J. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680 (1995).
    Article Google Scholar
  29. Staden, R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucl. Acids Res. 10, 2951–2961 (1982).
    Article CAS Google Scholar

Download references