Efstratiadis, A. Parental imprinting of autosomal mammalian genes. Curr. Opin. Genet. Dev.4, 265–280 (1994). ArticleCASPubMed Google Scholar
John, R.M. & Surani, M.A. Imprinted genes and regulation of gene expression by epigenetic inheritance. Curr. Opin. Cell Biol.8, 348–353 (1996). ArticleCASPubMed Google Scholar
Bartolomei, M.S., Zemel, S. & Tilghman, S.M. Parental imprinting of the mouse H19 gene. Nature351, 153–155 (1991). ArticleCASPubMed Google Scholar
Bartolomei, M.S., Webber, A.L., Brunkow, M.E. & Tilghman, S.M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev.7, 1663–1673 (1993). ArticleCASPubMed Google Scholar
Ferguson-Smith, A.C., Sasaki, H., Cattanach, B.M. & Surani, M.A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature362, 751–755 (1993). ArticleCASPubMed Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 (1993). ArticleCASPubMed Google Scholar
Elson, D.A. & Bartolomei, M.S. A 5′ differentially methylated sequence and the 3′ flanking region are necessary for HI9 transgene imprinting. Mol. Cell. Biol.17, 309–317 (1997). ArticleCASPubMedPubMed Central Google Scholar
Leighton, P.A., Ingram, R.S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S.M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature375, 34–39 (1995). ArticleCASPubMed Google Scholar
Urieli-Shoval, S., Gruenbaum, Y., Sedat, J. & Razin, A. The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett. 146, 148–152 (1982). ArticleCASPubMed Google Scholar
Patel, C.V. & Gopinathan, K.P. Determination of trace amounts of 5-methylcytosine in DNA by reverse-phase high-performance liquid chromatography. Anal. Biochem.164, 164–169 (1987). ArticleCASPubMed Google Scholar
Yoo-Warren, H., Pachnis, V., Ingram, R.S. & Tilghman, S.M. Two regulatory domains flank the mouse tf H19 gene. Mol. Cell. Biol.8, 4707–4715 (1988). ArticleCASPubMedPubMed Central Google Scholar
Robertson, H.M. et al. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics118, 461–470 (1988). CASPubMedPubMed Central Google Scholar
Daniels, S.B., McCarron, M., Love, C. & Chovnick, A. Dysgenesis-induced instability of rosy locus transformation in Drosophila melanogaster. analysis of excision events and the selective recovery of control element deletions. Genetics109, 95–117 (1985). CASPubMedPubMed Central Google Scholar
Tremblay, K.D., Saam, J.R., Ingram, R.S., Tilghman, S.M. & Bartolomei, M.S. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nature Genet.9, 407–413 (1995). ArticleCASPubMed Google Scholar
Zink, D. & Paro, R. Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. EMBO J.14, 5660–5671 (1995). ArticleCASPubMedPubMed Central Google Scholar
Pirrotta, V. in Vectors: A survey of molecular cloning vectors and their uses (eds Rodriguez, R.L. & Denhardt, D.T.) 437–456 (Butterworths, Boston, 1988). Book Google Scholar
Messmer, S., Franke, A. & Paro, R. Analysis of the functional role of the Polycomb chromo domain in Drosophila. Genes Dev.6, 1241–1254 (1992). ArticleCASPubMed Google Scholar
Spradling, A.L. & Rubin, G.M. Transformation of cloned P elements into Drosophila germ line chromosomes. Science218, 341–347 (1982). ArticleCASPubMed Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989). Google Scholar
Reuter, G. & Wolff, I. Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol. Gen. Genet.182, 516–519 (1981). ArticleCASPubMed Google Scholar