Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene (original) (raw)

References

  1. Vanier, T.M. Dystrophia Myotonia in Childhood. Br. Med. J. 2, 1285–1288 (1960).
    Article Google Scholar
  2. Harper, P.S. . in Myotonic Dystrophy 2nd edn (Saunders, Philadelphia, 1989).
    Google Scholar
  3. Sarnat, H.B. & Silbert, S.W., Maturational Arrest of Fetal Muscle in Neonatal Myotonic Dystrophy. Arch. Neurol. 33, 466–474 (1976).
    Article CAS PubMed Google Scholar
  4. Soussi-Yanicostas, N. et al. Distinct contractile protein profile in congenital myotonic dystrophy and X-linked myotubular myopathy. Neuromusc Dis 1, 103–111 (1992).
    Article Google Scholar
  5. Aslanidis, C. et al. Cloning of the essential myotonic dystrophy region and mapping of the putative defect. Nature 355, 548–551 (1992).
    Article CAS PubMed Google Scholar
  6. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).
    Article CAS PubMed Google Scholar
  7. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTQ) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).
    Article CAS PubMed Google Scholar
  8. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).
    Article CAS PubMed Google Scholar
  9. Fu, Y.H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).
    Article CAS PubMed Google Scholar
  10. Jansen, G. et al. Characterization of the myotonic dystrophy region predicts multiple protein isoform-encoding mRNAs. Nature Genet. 1, 261–266 (1992).
    Article CAS PubMed Google Scholar
  11. Harley, H.G. et al. Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355, 545–546 (1992).
    Article CAS PubMed Google Scholar
  12. Tsilfidis, C., MacKenzie, A.E., Mettler, G., Barcelo, J. & Korneluk, R.G. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nature Genet. 1, 192–195 (1992).
    Article CAS PubMed Google Scholar
  13. Barcelo, J.M., Mahadevan, M.S., Tsilfidis, C., MacKenzie, A.E. & Korneluk, R.G. Intergenerational stability of the myotonic dystrophy protomutation. Hum. molec. Genet. (in the press)
  14. Caskey, C.T., Pizzuti, A., Fu, Y.-H., Fenwick, R.G. & Nelson, D.L. Triplet repeat mutations in human disease. Science 256, 784–788 (1992).
    Article CAS PubMed Google Scholar
  15. Richards, R.I. & Sutherland, G.R. Dynamic mutations: A new class of mutations causing human disease. Cell 70, 709–712 (1992).
    Article CAS PubMed Google Scholar
  16. Howeler, C.J., Busch, H.F.M., Geraedts, J.P.M., Niermeijer, M.F. & Staal, A. Anticipation in myotonic dystrophy: fact or fiction? Brain 112, 779–797 (1989).
    Article PubMed Google Scholar
  17. Fu, Y.-H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).
    Article CAS PubMed Google Scholar
  18. Annemieke, J.M. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).
    Article Google Scholar
  19. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).
    Article CAS PubMed Google Scholar
  20. Bell, M.V. et al. Physical mapping across the fragile X: Hypermethylation and clinical expression of the fragile X syndrome. Cell 64, 861–866 (1991).
    Article CAS PubMed Google Scholar
  21. Sutcliffe, J.S. et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum. molec. Genet. 1, 397–400 (1992).
    Article CAS PubMed Google Scholar
  22. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).
    Article CAS PubMed Google Scholar
  23. The Huntington's disease collaborative research group. Cell 72, 971–983 (1993).
    Article Google Scholar
  24. McAllister, R.M., Melnyk, J., Finkelstein, J.Z., Adams, E.C. Jr., & Gardner, M.B. Cultivation in vitro of cells derived from a human rhabdomyosarcoma. Cancer 24, 520–526 (1969).
    Article CAS PubMed Google Scholar
  25. Gililand, G., Perrin, S., Blanchard, K. & Bunn, H.F. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc. natn. Acad. Sci. U.S.A. 87, 2725–2729 (1990).
    Article Google Scholar
  26. Fu, Y.-H. et al. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 260, 235–238 (1993).
    Article CAS PubMed Google Scholar
  27. Zucker, M. & Stiegler, P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl. Acids Res. 9, 133–148 (1981).
    Article Google Scholar
  28. Mullner, E.W. & Kuhn, L.C. A stem-loop in the 3′ untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. Cell 53, 815–825 (1988).
    Article CAS PubMed Google Scholar
  29. Mullner, E.W., Neupert, B. & Kuhn, L.C. A specific mRNA binding factor regulates the iron- dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58, 373–382 (1989).
    Article CAS PubMed Google Scholar
  30. Peltz, S.W., Brewer, G., Bernstein, P., Hart, P.A. & Ross, J. Regulation of mRNA turnover in eukaryotic cells. Crit. Rev. Euk. Gene Exp. 1, 99–126 (1991).
    CAS Google Scholar
  31. Bernstein, P.L., Herrick, D.J., Prokipcak, R.D. & Ross, J. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding stability determinant. Genes Dev. 6, 642–654 (1992).
    Article CAS PubMed Google Scholar
  32. Dix, D.J., Lin, P.-N., Kimata, Y. & Theil, E.C. The iron regulatory region of ferritin mRNA is also a positive control elememt for iron-independent translation. Biochemistry 31, 2818–2822 (1992).
    Article CAS PubMed Google Scholar
  33. Kaspar, R.L., Kakegawa, T., Cranston, H. & White, M.W. A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J. biol. Chem. 267, 508–514 (1992).
    CAS PubMed Google Scholar
  34. Sengupta, D.N., Berkhout, B., Gatignol, A., Zhou, A. & Silverman, R.H. Direct evidence for translational regulation by leader RNA and Tat protein of human immunodeficiency virus type 1. Proc. natn. Acad. Sci. U.S.A. 87, 7492–7496 (1990).
    Article CAS Google Scholar
  35. McCormack, S.J., Thomis, D.C. & Samuel, C.E. Mechanism of interferon action: Identification of a RNA binding domain within the N-terminal region of the human RNA-dependent P1/elF-2 alpha protein kinase. Virology 188, 47–56 (1992).
    Article CAS PubMed Google Scholar
  36. Wisdom, R. & Lee, W. Translation of c-myc mRNA is required for its post-transcriptional regulation during myogenesis. J. biol. Chem. 265, 19015–19021 (1990).
    CAS PubMed Google Scholar
  37. Taylor, S.S., Buechler, J.A. & Yonemoto, W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. An. Rev. Biochem. 59, 971–1005 (1990).
    Article CAS Google Scholar
  38. Farkas-Bargeton, E. et al. Immaturity of muscle fibers in the congenital form of myotonic dystrophy. J. neurol. Sci. 83, 145–159 (1988).
    Article CAS PubMed Google Scholar
  39. Li, L., Heller-Harrison, R., Czech, M. & Olson, E. Cyclic AMP-dependent protein kinase inhibits the activity of myogenic helix-loop-helix proteins. Molec. cell. Biol. 12, 4478–4485 (1992).
    Article CAS PubMed PubMed Central Google Scholar
  40. Li, L. et al. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domain. Cell 71, 1181–1194 (1992).
    Article CAS PubMed Google Scholar
  41. Piechaczyk, M. et al. Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissues. Nucl. Acids Res. 12, 6951–6963 (1984).
    Article CAS PubMed PubMed Central Google Scholar
  42. Puissant, C. & Houdebine, L.-M. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques 8, 148–149 (1990).
    CAS PubMed Google Scholar
  43. Birnboim, H.C. Rapid extraction of high molecular weight RNA from cultured cells and granulocytes for Northern analysis. Nucl. Acids Res. 16, 1487–1497 (1988).
    Article CAS PubMed PubMed Central Google Scholar
  44. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor, New York 1989).
    Google Scholar
  45. Sabourin, L.A. & Hawley, R.G. Suppression of programmed death and G1 arrest in B-cell hybridomas by interleukin-6 is not accompanied by altered expression of immediate early response genes. J. cell. Physiol. 145, 564–574 (1990).
    Article CAS PubMed Google Scholar
  46. Dretzen, G., Bellard, M., Sassone-Corsi, P. & Chambon, P. A reliable method for the recovery of DNA fragments from agarose and acrylamide gels. Anal. Biochem. 112, 295–298 (1981).
    Article CAS PubMed Google Scholar
  47. Feinberg, A.P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13 (1983).
    Article CAS PubMed Google Scholar
  48. Mahadevan, M. et al. Structure and genomic sequence of the myotonic dystrophy (DM kinase) gene. Hum. molec. Genet. (in the press).

Download references