A role for nuclear NF–κB in B–cell–specific demethylation of the Igκ locus (original) (raw)

References

  1. Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev. 6, 705–714 (1992).
    Article CAS Google Scholar
  2. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).
    Article CAS Google Scholar
  3. Macleod, D., Charlton, J., Mullins, J. & Bird, A. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).
    Article CAS Google Scholar
  4. Paroush, Z., Keshet, I., Israeli, J. & Cedar, H. Dynamics of demethylation and activation of the α-actin gene in myoblasts. Cell 63, 1229 (1990).
    Article CAS Google Scholar
  5. Lichtenstein, M., Keini, G., Cedar, H. & Bergman, Y. B-cell-specific demethylation: A novel role for the intronic κ chain enhancer sequence. Cell 76, 913–923 (1994).
    Article CAS Google Scholar
  6. Chen, J. & Alt, F.W. Gene rearrangement and B-cell development. Curr. Opin. Immunol. 5, 194–200 (1993).
    Article CAS Google Scholar
  7. Storb, U. & Arp, B. Methylation patters of immunoglobulin genes in lymphoid cells: connection of expression and differentiation with undermethylation. Proc. Natl. Acad. Sci. USA 80, 6642–6646 (1983).
    Article CAS Google Scholar
  8. Mather, E.L. & Perry, R.P. Methylation status and DNasel sensitivity of immunoglobulin genes: changes associated with rearrangement. Proc. Natl. Acad. Sci. USA 78, 2072–2076 (1983).
    Google Scholar
  9. Kelley, D.E., Pollok, B.A., Atchison, M.L. & Perry, R.P. The coupling between enhancer activity and hypomethylation of κ immunoglobulin genes is developmental regulated. Mol. Cell. Biol. 8, 930–937 (1988).
    Article CAS Google Scholar
  10. Goodhardt, M., Cavelier, P., Doyen, N., Kallenbach, S., Babinet, C. & Rougeon, F. Methylation status of immunoglobulin κ gene segments correlates with their recombination potential. Eur. J. Immunol. 23, 1789–1795 (1993).
    Article CAS Google Scholar
  11. Engler, P. et al. A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. Cell 65, 120 (1991).
    Article Google Scholar
  12. Hsieh, C.-L. & Lieber, M.R. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 11, 315–325 (1992).
    Article CAS Google Scholar
  13. Engler, P., Weng, A. & Storb, U. Influence of CpG methylation and target spacing on V(D)J recombination in a transgenic substrate. Mol. Cell. Biol. 13, 571–577 (1993).
    Article CAS Google Scholar
  14. Atchison, M.L. & Perry, R.P. The role of kappa enhancer and its binding factor NF-kappa B in the developmental regulation of kappa gene transcription. Cell 48, 121–128 (1987).
    Article CAS Google Scholar
  15. Atchison, M.L. & Perry, R.P. Complementation between two cell lines lacking kappa enhancer activity: implications for the developmental control of immunoglobulin transcription. EMBO J. 7, 4213–4220 (1988).
    Article CAS Google Scholar
  16. Klehr, D., Maass, K. & Bode, J. Scaffold-attached regions from three human interferon (β domains can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry 30, 1264–1270 (1991).
    Article CAS Google Scholar
  17. Mirkovitch, J., Mirautt, M.-E. & Laemmli, U.K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39, 223–232 (1984).
    Article CAS Google Scholar
  18. Dietz, A., Kay, V., Schlake, T.A., Landsmann, J. & Bode, J. Plant scaffold attached region detected close to a T-DNA integration site is active in mammalian cells. Nucl. Acids Res. 22, 2744–2751 (1994).
    Article CAS Google Scholar
  19. Cockerill, P.N., Yuen, M.-H. & Garrard, W.T. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem. 262, 5394–5397 (1987).
    CAS Google Scholar
  20. Staudt, L.M. & Lenardo, M.J. Immunoglobulin gene transcription. Annu. Rev. Immunol. 9, 373–398 (1991).
    Article CAS Google Scholar
  21. Ernst, P. & Smale, S.T. Combinatorial regulation of transcription II: The immunoglobulin μ heavy chain gene. Immunity 2, 427–438 (1995).
    Article CAS Google Scholar
  22. Ben-Shushan, E., Pikarsky, E., Klar, A. & Bergman, Y. Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol. Cell. Biol. 13, 891–901 (1993).
    Article CAS Google Scholar
  23. Lenardo, M., Pierce, J.W. & Baltimore, D. Protein binding sites in Ig gene enhancers determining transcriptional activity and inducibility. Science 236, 1573–1577 (1987).
    Article CAS Google Scholar
  24. Miyamoto, S. & Verma, I.M. REL/NF-κB/IκB story. Adv. Cancer Res. 66, 255–292 (1995).
    Article CAS Google Scholar
  25. Finco, T.M. & Baldwin, A.S. Mechanistic aspects of NF-κB regulation: The emerging role of phosphorylation and proteolysis. Cell 3, 263–272 (1995).
    CAS Google Scholar
  26. Bergman, Y., Rice, D., Grosschedl, R. & Baltimore, D. Two regulatory elements for immunoglobulin κ light chain gene expression. Proc. Natl. Acad. Sci. USA 81, 7041–7045 (1984).
    Article CAS Google Scholar
  27. Scott, M.L., Fujita, T., Liou, H.-C., Nolan, G.P. & Baltimore, D. . The p65 subunitof NF-κB regulates IκB by two distinct mechanisms. Genes Dev. 7, 1266–1276 (1993).
    Article CAS Google Scholar
  28. Sun, S.-C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor lκBα: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).
    Article CAS Google Scholar
  29. Baeuerle P.A & Baltimore, D. Activation of DNA binding activity in an apparently cytoplasmic precursor of the NF-icB transcription factor. Cell 53, 211–217 (1988).
    Article CAS Google Scholar
  30. Lernbecher, T., Müller, U. & Wirth, T., NF-κB/Rel transcription factors are responsible for tissue-specific and inducible gene activation. Nature 365, 767–770 (1993).
    Article CAS Google Scholar
  31. Lernbecher,T. Kistler, B. & Wirth, T. Two distinct mechanisms contribute to the constitutive activation of RelB in lymphoid cells. EMBO J. 13, 4060–4069 (1994).
    Article CAS Google Scholar
  32. Weih,F. & Carrasco, D. & Bravo, R. Constitutive and inducible Rel/NF-kappa B activities in mouse thymus and spleen. Oncogene 9, 3289–3297 (1994).
    CAS PubMed Google Scholar
  33. Ryseck, R.-P. et al. RelB, a new Rel family transcription activator that can interact with p50 NF-κB. Mol. Cell. Biol. 12, 674–684 (1992).
    Article CAS Google Scholar
  34. Ruben, S.M. et al. 65 κD subunit of NF-κB. Science 251, 1490 (1991).
    Article CAS Google Scholar
  35. Dobrzanski,P, Ryseck R.-P & Bravo, R. Differential interactions of Rel-NF-kappa B complexes with I kappa B alpha determine pools of constitutive and inducible NF-kappa B activity. EMBO J. 13, 4608–4616 (1994).
    Article CAS Google Scholar
  36. Demengeot, J., Oltz, E.M. & Alt, F.W. Promotion of V(D)J recombinational accessibility by the intronic Eκ element: role of the κB motif. Int. Immunol. 7, 1995–2003 (1995).
    Article CAS Google Scholar
  37. Israel, A. A rote for phosphorylation and degradation in the control of NF-κB activity. Trends Genef. 11, 203–205 (1995).
    Article CAS Google Scholar
  38. Thanos, D. & Maniatis, T. NF-κfi: A lesson in family values. Cell 80, 529–532 (1995).
    Article CAS Google Scholar
  39. Verma, I.M., Stevenson, J.K., Schwarz, E.M., Van Antwerp, D. & Miyamoto, S. Rel/NF-κB/lκB family: intimate tales of association and dissociation. Genes Dev. 9, 2723–2735 (1995).
    Article CAS Google Scholar
  40. Laemmli, U.K., Kas, E., Poljak, L. & Adachi, Y. Scaffold-associated regions: c/s-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Genet. Dev. 2, 275–285 (1992).
    Article CAS Google Scholar
  41. Jenuwein, T.J., Forrester, W.C., Oiu, R.-G. & Grosschedl, R. The immunoglobulin μ enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. Genes Dev. 7, 2016–2032 (1993).
    Article CAS Google Scholar
  42. Forrester, W.C., van Genderen, C., Jenuwein, T. & Grosschedl, R. Dependence of enhancer-mediated transcription of the immunoglobulin μ gene on nuclear matrix attachment regions. Science 265, 1221–1225 (1994).
    Article CAS Google Scholar
  43. Yeivin, A. & Razin, A. Gene methylation patterns and expression in DNA methylation. Molecular biology and biological significance, (eds Jost, J. P. & Saluz, H. R) 524–568 (Birkhauser Veriag Basel, Switzerland, 1993).
    Google Scholar
  44. Ferrier, P. et al. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J. 9, 117–125 (1990).
    Article CAS Google Scholar
  45. Chen, J., Young, F., Bottaro, A., Stewart, V., Smith, R.K. .& Alt, F.W. Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus. EMBO J. 12, 4635–4645 (1993).
    Article CAS Google Scholar
  46. Serwe, M. & Sablitzky, F.V. (D)J recombination in B cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer. EMBO J. 12, 2321–2327 (1993).
    Article CAS Google Scholar
  47. Takeda, S., Zou, Y.-R., Bluethmann, H., Kitamura, D., Muller, U. & Rajewsky, K. Deletion of the immunoglobulin κ chain intron enhancer abolishes κ chain gene rearrangement in c/s but not A, chain gene rearrangement in trans. EMBO J. 12, 2329–2336 (1993).
    Article CAS Google Scholar
  48. Fernex, C., Capone, M. & Ferrier, P. The V(D)J recombinational and transcriptional activities of the immunoglobulin heavy-chain intronic enhancer can be mediated through distinct protein-binding sites in a transgenic substrate. Mol. Cell. Biol. 15, 3217–3226 (1995).
    Article CAS Google Scholar
  49. Hiramatsu, R. et al . The 3′ enhancer region determines the B/T specificity and Pro-B/Pre-B specificity of immunoglobulin Vκ-Jκ joining. Cell 83, 1113–1123 (1995).
    CAS PubMed Google Scholar
  50. Oltz, E. et al. V(D)J recombinase-inducibte B-cell line: role of transcriptional enhancer elements in directing V(D)J recombination. Mol. Cell. Biol. 13, 6223–6230 (1993).
    Article CAS Google Scholar
  51. Sompayrac, L.M. & Danna, K.J. Efficient injection of monkey cells with DNA of simian virus 40. Proc. Natl. Acad. Sci. USA 78, 7575–7578 (1981).
    Article CAS Google Scholar
  52. Wirth, T. & Baltimore, D. Nuclear factor NF-kappa B can interact functionally with its cognate binding site to provide lymphoid-specific promoter function. EMBO J. 7, 3109–3111 (1988).
    Article CAS Google Scholar

Download references