A role for nuclear NF–κB in B–cell–specific demethylation of the Igκ locus (original) (raw)
References
Kafri, T. et al. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev.6, 705–714 (1992). ArticleCAS Google Scholar
Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature371, 435–438 (1994). ArticleCAS Google Scholar
Macleod, D., Charlton, J., Mullins, J. & Bird, A. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev.8, 2282–2292 (1994). ArticleCAS Google Scholar
Paroush, Z., Keshet, I., Israeli, J. & Cedar, H. Dynamics of demethylation and activation of the α-actin gene in myoblasts. Cell63, 1229 (1990). ArticleCAS Google Scholar
Lichtenstein, M., Keini, G., Cedar, H. & Bergman, Y. B-cell-specific demethylation: A novel role for the intronic κ chain enhancer sequence. Cell76, 913–923 (1994). ArticleCAS Google Scholar
Chen, J. & Alt, F.W. Gene rearrangement and B-cell development. Curr. Opin. Immunol.5, 194–200 (1993). ArticleCAS Google Scholar
Storb, U. & Arp, B. Methylation patters of immunoglobulin genes in lymphoid cells: connection of expression and differentiation with undermethylation. Proc. Natl. Acad. Sci. USA80, 6642–6646 (1983). ArticleCAS Google Scholar
Mather, E.L. & Perry, R.P. Methylation status and DNasel sensitivity of immunoglobulin genes: changes associated with rearrangement. Proc. Natl. Acad. Sci. USA78, 2072–2076 (1983). Google Scholar
Kelley, D.E., Pollok, B.A., Atchison, M.L. & Perry, R.P. The coupling between enhancer activity and hypomethylation of κ immunoglobulin genes is developmental regulated. Mol. Cell. Biol.8, 930–937 (1988). ArticleCAS Google Scholar
Goodhardt, M., Cavelier, P., Doyen, N., Kallenbach, S., Babinet, C. & Rougeon, F. Methylation status of immunoglobulin κ gene segments correlates with their recombination potential. Eur. J. Immunol.23, 1789–1795 (1993). ArticleCAS Google Scholar
Engler, P. et al. A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. Cell65, 120 (1991). Article Google Scholar
Hsieh, C.-L. & Lieber, M.R. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J.11, 315–325 (1992). ArticleCAS Google Scholar
Engler, P., Weng, A. & Storb, U. Influence of CpG methylation and target spacing on V(D)J recombination in a transgenic substrate. Mol. Cell. Biol.13, 571–577 (1993). ArticleCAS Google Scholar
Atchison, M.L. & Perry, R.P. The role of kappa enhancer and its binding factor NF-kappa B in the developmental regulation of kappa gene transcription. Cell48, 121–128 (1987). ArticleCAS Google Scholar
Atchison, M.L. & Perry, R.P. Complementation between two cell lines lacking kappa enhancer activity: implications for the developmental control of immunoglobulin transcription. EMBO J.7, 4213–4220 (1988). ArticleCAS Google Scholar
Klehr, D., Maass, K. & Bode, J. Scaffold-attached regions from three human interferon (β domains can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry30, 1264–1270 (1991). ArticleCAS Google Scholar
Mirkovitch, J., Mirautt, M.-E. & Laemmli, U.K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell39, 223–232 (1984). ArticleCAS Google Scholar
Dietz, A., Kay, V., Schlake, T.A., Landsmann, J. & Bode, J. Plant scaffold attached region detected close to a T-DNA integration site is active in mammalian cells. Nucl. Acids Res.22, 2744–2751 (1994). ArticleCAS Google Scholar
Cockerill, P.N., Yuen, M.-H. & Garrard, W.T. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem.262, 5394–5397 (1987). CAS Google Scholar
Ernst, P. & Smale, S.T. Combinatorial regulation of transcription II: The immunoglobulin μ heavy chain gene. Immunity2, 427–438 (1995). ArticleCAS Google Scholar
Ben-Shushan, E., Pikarsky, E., Klar, A. & Bergman, Y. Extinction of Oct-3/4 gene expression in embryonal carcinoma x fibroblast somatic cell hybrids is accompanied by changes in the methylation status, chromatin structure, and transcriptional activity of the Oct-3/4 upstream region. Mol. Cell. Biol.13, 891–901 (1993). ArticleCAS Google Scholar
Lenardo, M., Pierce, J.W. & Baltimore, D. Protein binding sites in Ig gene enhancers determining transcriptional activity and inducibility. Science236, 1573–1577 (1987). ArticleCAS Google Scholar
Miyamoto, S. & Verma, I.M. REL/NF-κB/IκB story. Adv. Cancer Res.66, 255–292 (1995). ArticleCAS Google Scholar
Finco, T.M. & Baldwin, A.S. Mechanistic aspects of NF-κB regulation: The emerging role of phosphorylation and proteolysis. Cell3, 263–272 (1995). CAS Google Scholar
Bergman, Y., Rice, D., Grosschedl, R. & Baltimore, D. Two regulatory elements for immunoglobulin κ light chain gene expression. Proc. Natl. Acad. Sci. USA81, 7041–7045 (1984). ArticleCAS Google Scholar
Scott, M.L., Fujita, T., Liou, H.-C., Nolan, G.P. & Baltimore, D. . The p65 subunitof NF-κB regulates IκB by two distinct mechanisms. Genes Dev.7, 1266–1276 (1993). ArticleCAS Google Scholar
Sun, S.-C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor lκBα: evidence for an inducible autoregulatory pathway. Science259, 1912–1915 (1993). ArticleCAS Google Scholar
Baeuerle P.A & Baltimore, D. Activation of DNA binding activity in an apparently cytoplasmic precursor of the NF-icB transcription factor. Cell53, 211–217 (1988). ArticleCAS Google Scholar
Lernbecher, T., Müller, U. & Wirth, T., NF-κB/Rel transcription factors are responsible for tissue-specific and inducible gene activation. Nature365, 767–770 (1993). ArticleCAS Google Scholar
Lernbecher,T. Kistler, B. & Wirth, T. Two distinct mechanisms contribute to the constitutive activation of RelB in lymphoid cells. EMBO J.13, 4060–4069 (1994). ArticleCAS Google Scholar
Weih,F. & Carrasco, D. & Bravo, R. Constitutive and inducible Rel/NF-kappa B activities in mouse thymus and spleen. Oncogene9, 3289–3297 (1994). CASPubMed Google Scholar
Ryseck, R.-P. et al. RelB, a new Rel family transcription activator that can interact with p50 NF-κB. Mol. Cell. Biol.12, 674–684 (1992). ArticleCAS Google Scholar
Dobrzanski,P, Ryseck R.-P & Bravo, R. Differential interactions of Rel-NF-kappa B complexes with I kappa B alpha determine pools of constitutive and inducible NF-kappa B activity. EMBO J.13, 4608–4616 (1994). ArticleCAS Google Scholar
Demengeot, J., Oltz, E.M. & Alt, F.W. Promotion of V(D)J recombinational accessibility by the intronic Eκ element: role of the κB motif. Int. Immunol.7, 1995–2003 (1995). ArticleCAS Google Scholar
Israel, A. A rote for phosphorylation and degradation in the control of NF-κB activity. Trends Genef. 11, 203–205 (1995). ArticleCAS Google Scholar
Thanos, D. & Maniatis, T. NF-κfi: A lesson in family values. Cell80, 529–532 (1995). ArticleCAS Google Scholar
Verma, I.M., Stevenson, J.K., Schwarz, E.M., Van Antwerp, D. & Miyamoto, S. Rel/NF-κB/lκB family: intimate tales of association and dissociation. Genes Dev.9, 2723–2735 (1995). ArticleCAS Google Scholar
Laemmli, U.K., Kas, E., Poljak, L. & Adachi, Y. Scaffold-associated regions: c/s-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Genet. Dev.2, 275–285 (1992). ArticleCAS Google Scholar
Jenuwein, T.J., Forrester, W.C., Oiu, R.-G. & Grosschedl, R. The immunoglobulin μ enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation. Genes Dev.7, 2016–2032 (1993). ArticleCAS Google Scholar
Forrester, W.C., van Genderen, C., Jenuwein, T. & Grosschedl, R. Dependence of enhancer-mediated transcription of the immunoglobulin μ gene on nuclear matrix attachment regions. Science265, 1221–1225 (1994). ArticleCAS Google Scholar
Yeivin, A. & Razin, A. Gene methylation patterns and expression in DNA methylation. Molecular biology and biological significance, (eds Jost, J. P. & Saluz, H. R) 524–568 (Birkhauser Veriag Basel, Switzerland, 1993). Google Scholar
Ferrier, P. et al. Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO J.9, 117–125 (1990). ArticleCAS Google Scholar
Chen, J., Young, F., Bottaro, A., Stewart, V., Smith, R.K. .& Alt, F.W. Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus. EMBO J.12, 4635–4645 (1993). ArticleCAS Google Scholar
Serwe, M. & Sablitzky, F.V. (D)J recombination in B cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer. EMBO J.12, 2321–2327 (1993). ArticleCAS Google Scholar
Takeda, S., Zou, Y.-R., Bluethmann, H., Kitamura, D., Muller, U. & Rajewsky, K. Deletion of the immunoglobulin κ chain intron enhancer abolishes κ chain gene rearrangement in c/s but not A, chain gene rearrangement in trans. EMBO J.12, 2329–2336 (1993). ArticleCAS Google Scholar
Fernex, C., Capone, M. & Ferrier, P. The V(D)J recombinational and transcriptional activities of the immunoglobulin heavy-chain intronic enhancer can be mediated through distinct protein-binding sites in a transgenic substrate. Mol. Cell. Biol.15, 3217–3226 (1995). ArticleCAS Google Scholar
Hiramatsu, R. et al. The 3′ enhancer region determines the B/T specificity and Pro-B/Pre-B specificity of immunoglobulin Vκ-Jκ joining. Cell83, 1113–1123 (1995). CASPubMed Google Scholar
Oltz, E. et al. V(D)J recombinase-inducibte B-cell line: role of transcriptional enhancer elements in directing V(D)J recombination. Mol. Cell. Biol.13, 6223–6230 (1993). ArticleCAS Google Scholar
Sompayrac, L.M. & Danna, K.J. Efficient injection of monkey cells with DNA of simian virus 40. Proc. Natl. Acad. Sci. USA78, 7575–7578 (1981). ArticleCAS Google Scholar
Wirth, T. & Baltimore, D. Nuclear factor NF-kappa B can interact functionally with its cognate binding site to provide lymphoid-specific promoter function. EMBO J.7, 3109–3111 (1988). ArticleCAS Google Scholar