BIN1 is a novel MYC–interacting protein with features of a tumour suppressor (original) (raw)
References
Cole, M.D. The myc oncogene: Its role in transformation and differentiation. Annu. Rev. Genet.20, 361–384 (1986). ArticleCAS Google Scholar
Evan, G.I. & Littlewood, T.D. The role of c-myc in cell growth. Curr. Opin. Genet. Dev.3, 44–49 (1993). ArticleCAS Google Scholar
Packham, G. & Cleveland, J. c-Myc and apoptosis. Biochim. Biophys. Acta1242, 11–28 (1995). PubMed Google Scholar
Henriksson, M. & Lüscher, B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv. Cancer Res.68, 109–182 (1996). ArticleCAS Google Scholar
Eilers, M., Picard, D., Yamamoto, K.R. & Bishop, J.M. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature340, 66–68 (1989). ArticleCAS Google Scholar
Heikkila, R. et al. A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature328, 445–448 (1987). ArticleCAS Google Scholar
Holt, J.T., Redner, R.L. & Nienhuis, A.W. An oligomer complementary to c-myc mRNA inhibits prolieration of HL-60 promyeloctic cells and induces differentiation. Mol. Cell. Biol.8, 963–973 (1988). ArticleCAS Google Scholar
Sklar, M.D. et al. Depletion of c-myc with specific antisense sequences reverses the transformed phenotype in ras oncogene-transformed NIH 3T3 cells. Mol. Cell. Biol.11, 3699–3710 (1991). ArticleCAS Google Scholar
Sawyers, C.L., Callahan, W. & Witte, O.N. Dominant negative MYC blocks transformation by ABL oncogenes. Cell70, 901–10 (1992). ArticleCAS Google Scholar
Hanson, K.D., Shichiri, M., Follansbee, M.R. & Sedivy, J.M. Effects of c-myc expression on cell cycle progression. Mol. Cell. Biol.14, 5748–5755 (1994). ArticleCAS Google Scholar
Askew, D.S., Ashmun, R.A., Simmons, B.C. & Cleveland, J.L. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene6, 1915–22 (1991). CAS Google Scholar
Evan, G.I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell69, 119–128 (1992). ArticleCAS Google Scholar
Meichle, A., Philipp, A. & Eilers, M. The functions of Myc proteins. Biochim Biophys Acta1114, 129–146 (1992). CASPubMed Google Scholar
Stone, J. et al. Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol.7, 1697–1709 (1987). ArticleCAS Google Scholar
Kato, G.J., Barrett, J., Villa-Garcia, M. & Dang, C.V. An amino-terminal c-Myc domain required for neoplastic transformation activates transcription. Mol. Cell. Biol.10, 5914–5920 (1990). ArticleCAS Google Scholar
Gupta, S., Seth, A. & Davis, R.J. Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc. Natl. Acad. Sci. USA90, 3216–3220 (1993). ArticleCAS Google Scholar
Seth, A., Gupta, S. & Davis, R.J. Cell cycle regulation of the c-Myc transcriptional activation domain. Mol. Cell. Biol.13, 4125–4136 (1993). ArticleCAS Google Scholar
Lutterbach, B. & Hann, S.R. Hierarchical phosphorylation at N-terminal transformation-sensitive sites in c-Myc protein is regulated by mitogens and in mitosis. Mol. Cell. Biol.14, 5510–5522 (1994). ArticleCAS Google Scholar
Hoang, A.T. et al. A link between increase transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol. Cell. Biol.15, 4031–4042 (1995). ArticleCAS Google Scholar
Li, L., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E.B. c-Myc activates and represses target gene through the E-box Myc binding site and the core promoter region respectively. EMBO J.13, 4070–4079 (1994). ArticleCAS Google Scholar
Papas, T.S. & Lautenberger, J.A. Sequence curiosity in v-myc oncogene. Nature318, 237 (1985). ArticleCAS Google Scholar
Bhatia, K. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas. Nature Genet.5, 56–61 (1993). ArticleCAS Google Scholar
Yano, T. et al. Clustered mutations in the second exon of the MYC gene in sporadic Burkitt's lymphoma. Oncogene8, 2741–8 (1993). CASPubMed Google Scholar
Gu, W., Bhatia, K., Magrath, I.T., Dang, C.V. & DallaFavera, R. Binding and suppresion of the myc transcriptional activation domain by p107. Science264, 251–254 (1994). ArticleCAS Google Scholar
Beijersbergen, R.L., Hijmans, E.M., Zhu, L. & Bernards, R. Interaction of c-Myc with the pRb-related protein p107 results in inhibition of c-Myc-mediated transactivation. EMBO J.13, 4080–4086 (1994). ArticleCAS Google Scholar
Vojtek, A.B., Hollenberg, S.M. & Cooper, J.A. Mammalian ras interacts directly with the serine/threonine kinase Raf. Cell74, 205–214 (1993). ArticleCAS Google Scholar
Pulverer, B.J. et al. Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene9, 59–70 (1994). CASPubMed Google Scholar
Bianchi, M.W., Plyte, S.E., Kreis, M. & Woodgett, J.R. A Saccharomyces cerevisiae protein-serine kinase related to mammalian glycogen synthase kinase-3 and the Drosophila melanogaster gene shaggy product. Gene134, 51–6 (1993). ArticleCAS Google Scholar
Pawson, T. & Gish, G.D. SH2 and SH3 domains: from structure to function. Cell71, 359–362 (1992). ArticleCAS Google Scholar
Lichte, B., Veh, R.W., Meyer, H.E. & Kilimann, M.W. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J.11, 2521–2530 (1992). ArticleCAS Google Scholar
Folli, F. et al. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer. N. Engl. J. Med.328, 546–51 (1993). ArticleCAS Google Scholar
Brown, R.H. in Principles of Internal Medicine (eds Isselbacher, K.J.) 1878–1882 (McGraw-Hill, New York, 1994). Google Scholar
Bauer, F., Urdaci, M., Aigle, M. & Crouzet, M. Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns. Mol. Cell. Biol.13, 5070–5084 (1993). ArticleCAS Google Scholar
Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature304, 596–602 (1983). ArticleCAS Google Scholar
Ruley, H.E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature304, 602–606 (1983). ArticleCAS Google Scholar
Rao, L. et al. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc. Natl. Acad. Sci. USA89, 7742–7746 (1992). ArticleCAS Google Scholar
Leder, A., Pattengale, P.K., Kuo, A., Stewart, T.A. & Leder, P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell45, 485–95 (1986). ArticleCAS Google Scholar
Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell49, 465–75 (1987). ArticleCAS Google Scholar
Berns, E.M. et al. c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res.52, 1107–13 (1992). CASPubMed Google Scholar
Hehir, D.J., McGreal, G., Kirwan, W.O., Kealy, W. & Brady, M.P. c-myc oncogene expression: a marker for females at risk of breast carcinoma. J. Surg. Oncol.54, 207–9 (1993). ArticleCAS Google Scholar
Kreipe, H. et al. Amplification of c-myc but not of c-erbB-2 is associated with high proliferative capacity in breast cancer. Cancer Res.53, 1956–61 (1993). CASPubMed Google Scholar
Watson, P.H., Safneck, J.R., Le, K., Dubik, D. & Shiu, R.P. Relationship of c-myc amplification to progression of breast cancer from in situ to invasive tumor and lymph node metastasis. J. Natl. Cancer Inst.85, 902–7 (1993). ArticleCAS Google Scholar
David, C., McPherson, P.S., Mundigl, O. & de Camilli, P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. Proc. Natl. Acad. Sci. USA93, 331–335 (1996). ArticleCAS Google Scholar
Gaubatz, S., Meichle, A. & Eilers, M. An E-box element localized in the first intron mediates regulation of the prothymosin α gene by c-myc. Mol. Cell. Biol.14, 3853–3862 (1994). ArticleCAS Google Scholar
Born, T., Frost, J., Schönthal, A., Prendergast, G.C. & Feramisco, J. c-Myc and oncogenic ras induce the cdc2 promoter. Mol. Cell. Biol.14, 5741–5747 (1994). Article Google Scholar
Bello-Fernandez, C., Packham, G. & Cleveland, J.L. The ornithine decarboxylase gene is a transcriptional target of c-MYC. Proc. Natl. Acad. Sci. USA90, 7804–7808 (1993). ArticleCAS Google Scholar
Sakamuro, D. et al. c-Myc induces apoptosis in epithelial cells by p53-dependent and p53-independent mechanisms. Oncogene11, 2411–2418 (1995). CASPubMed Google Scholar
Negorev, D. et al. The Bin1 gene localizes to human chromsome 2q14 by PCR analysis of somatic cell hybrids and fluorescence in situ hybridization. Genomics33, 329–331 (1996). ArticleCAS Google Scholar
Cher, M.L. et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res.56, 3091–3102 (1996). CASPubMed Google Scholar
Hayata, I. et al. Chromosomal aberrations observed in 52 mouse myeloid leukemias. Cancer Res.43, 367–373 (1983). CASPubMed Google Scholar
Jahner, D. & Hunter, T. The _ras_-related gene _rho_B is an immediate-early gene inducible by v-Fps, epidermal growth factor, and platelet-derived growth factor in rat fibroblasts. Mol. Cell. Biol.11, 3682–3690 (1991). ArticleCAS Google Scholar
Murre, C., McCaw, P.S. & Baltimore, D. A new DMA-binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and Myc proteins. Cell56, 777–783 (1989). ArticleCAS Google Scholar
Prendergast, G.C., Lawe, D. & Ziff, E.B. Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell65, 395–407 (1991). ArticleCAS Google Scholar
Niman, H.L. et al. Generation of protein-reactive antibodies by short peptides is an event of high frequency: implications for the structural basis of immune recognition. Proc. Natl. Acad. Sci. USA80, 4949–4953 (1983). ArticleCAS Google Scholar
Kelekar, A. & Cole, M. Tumorigenicity of fibroblast lines expressing the adenovirus E1a, cellular p53, or normal c-myc genes. Mol. Cell. Biol.6, 7–14 (1986). ArticleCAS Google Scholar
Prendergast, G.C., Hopewell, R., Gorham, B. & Ziff, E.B. Biphasic effect of Max on Myc transformation activity and dependence on N-and C-terminal Max functions. Genes Dev.6, 2429–2439 (1992). ArticleCAS Google Scholar
Chen, C. & Okayama, H. High efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol.7, 2745–2752 (1987). ArticleCAS Google Scholar
Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1988). Google Scholar
Prendergast, G.C. & Ziff, E.B. Mbh1: A novel gelsolin/severin-related protein which binds actin in vitro and exhibits nuclear localization in vivo. EMBO J.10, 757–766 (1991). ArticleCAS Google Scholar
Prendergast, G.C. & Cole, M.D. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene. Mol. Celt. Biol.9, 124–134 (1989). ArticleCAS Google Scholar
Shiozawa, M. et al. Synthesis of human gamma-glutamyl transpeptidase (GGT) during the fetal development of liver. Gene87, 299–303 (1990). ArticleCAS Google Scholar
Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA81, 1991–1995 (1984). ArticleCAS Google Scholar
Yamamoto, R., Li, X., Winter, S., Francke, U. & Kilimann, M.W. Primary structure of human amphiphysin, the dominant autoantigen of paraneoplastic Stiff-Man Syndrome, and mapping of its gene (AMPH) to chromosome 7p13–p14. Human Mol. Genet.4, 265–268 (1995). ArticleCAS Google Scholar