A mouse model of human L1 retrotransposition (original) (raw)
The International Human Genome Sequencing Consortium. Nature409, 860–921 (2001).
Ostertag, E.M. & Kazazian, H.H. Jr. Biology of mammalian L1 retrotransposons. Ann. Rev. Genet.35, 501–538 (2001). ArticleCAS Google Scholar
Sassaman, D.M. et al. Many human L1 elements are capable of retrotransposition. Nature Genet.16, 37–43 (1997). ArticleCAS Google Scholar
Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell87, 917–927 (1996). ArticleCAS Google Scholar
Branciforte, D. & Martin, S.L. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol.14, 2584–2592 (1994). ArticleCAS Google Scholar
Trelogan, S.A. & Martin, S.L. Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. Proc. Natl Acad. Sci. USA92, 1520–1524 (1995). ArticleCAS Google Scholar
Nakanishi, T. et al. Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett.449, 277–283 (1999). ArticleCAS Google Scholar
Ostertag, E.M. et al. Determination of L1 retrotransposition kinetics in cultured cells. Nucleic Acids Res.28, 1418–1423 (2000). ArticleCAS Google Scholar
Schwahn, U. et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nature Genet.19, 327–332 (1998). ArticleCAS Google Scholar
Kimberland, M.L. et al. Full-length human L1 insertions retain the capacity for high-frequency retrotransposition in cultured cells. Hum. Mol. Genet.8, 1557–1560 (1999). ArticleCAS Google Scholar
Romrell, L.J., Bellvé, A.R. & Fawcett, D.W. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev. Biol.49, 119–131 (1976). ArticleCAS Google Scholar
Welch, J.E., Schatte, E.C., O'Brien, D.A. & Eddy, E.M. Expression of a glyceraldehyde 3-phosphate dehydrogenase gene specific to mouse spermatogenic cells. Biol. Reprod.46, 869–878 (1992). ArticleCAS Google Scholar
Steger, K. Transcriptional and translational regulation of gene expression in haploid spermatids. Anat. Embryol.199, 471–487 (1999). ArticleCAS Google Scholar
Swergold, G.D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol.10, 6718–6729 (1990). ArticleCAS Google Scholar
Loeb, D.D. et al. The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol. Cell. Biol.6, 168–182 (1986). ArticleCAS Google Scholar
Padgett, R.W., Hutchison, C.A. 3rd & Edgell, M.H. The F-type 5′ motif of mouse L1 elements: a major class of L1 termini similar to the A-type in organization but unrelated in sequence. Nucleic Acids Res.16, 739–749 (1988). ArticleCAS Google Scholar
Naas, T.P. et al. An actively retrotranposing, novel subfamily of mouse L1 elements. EMBO J.17, 590–597 (1998). ArticleCAS Google Scholar
Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposable elements. Cell72, 595–605 (1993). ArticleCAS Google Scholar
Ostertag, E.M. & Kazazian, H.H. Jr. Twin Priming, a proposed mechanism for the creation of inversions in L1 retrotransposition. Genet. Res.11, 2059–2065 (2001). ArticleCAS Google Scholar
Feng, Q., Moran, J.V., Kazazian, H.H. Jr. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell87, 905–916 (1996). ArticleCAS Google Scholar
Jurka, J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl Acad. Sci. USA94, 1872–1877 (1997). ArticleCAS Google Scholar
Cost, G.J. & Boeke, J.D. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochem.37, 18081–18093 (1998). ArticleCAS Google Scholar
Boissinot, S., Chevret, P. & Furano, A.V. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol.17, 915–928 (2000). ArticleCAS Google Scholar
Kazazian, H.H. Jr. An estimated frequency of endogenous insertional mutations in humans. Nature Genet.22, 130 (1999).
Li, X. et al. Frequency of recent retrotransposition events in the human factor IX gene. Hum. Mutat.17, 511–519 (2001). ArticleCAS Google Scholar
Jensen, S., Gassama, M.P. & Heidmann, T. Taming of transposable elements by homology-dependent gene silencing. Nature Genet.21, 209–212 (1999). ArticleCAS Google Scholar
Hohjoh, H. & Singer, M.F. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J.15, 630–639 (1996). ArticleCAS Google Scholar
Kolosha, V.O. & Martin, S.L. In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc. Natl Acad. Sci. USA94, 10155–10160 (1997). ArticleCAS Google Scholar
Mathias, S.L., Scott, A.F., Kazazian, H.H., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science254, 1808–1810 (1991). ArticleCAS Google Scholar
Fanning, T. & Singer, M. The line-1 DNA-sequences in 4 mammalian orders predicts proteins that conserve homologies to retrovirus proteins. Nucleic Acids Res.15, 2251–2260 (1987). ArticleCAS Google Scholar