Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat (original) (raw)

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
    Article CAS PubMed Google Scholar
  2. Feschotte, C., Jiang, N. & Wessler, S.R. Plant transposable elements: where genetics meets genomics. Nat. Rev. Genet. 3, 329–341 (2002).
    Article CAS PubMed Google Scholar
  3. Fedoroff, N.V. About maize transposable elements and development. Cell 56, 181–191 (1989).
    Article CAS PubMed Google Scholar
  4. Masson, P., Surosky, R., Kingsbury, J.A. & Fedoroff, N.V. Genetic and molecular analysis of the _Spm_-dependent a-m2 alleles of the maize a locus. Genetics 117, 117–137 (1987).
    CAS PubMed PubMed Central Google Scholar
  5. Martienssen, R., Barkan, A., Taylor, W.C. & Freeling, M. Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes. Dev. 4, 331–343 (1990).
    Article CAS PubMed Google Scholar
  6. SanMiguel, P. et al. Nested retrotransposons in the intergenic regions of the maize genome. Science 274, 765–768 (1996).
    Article CAS PubMed Google Scholar
  7. Fu, H. et al. The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc. Natl. Acad. Sci. USA 98, 8903–8908 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  8. SanMiguel, P.J., Ramakrishna, W., Bennetzen, J.L., Busso, C.S. & Dubcovsky, J. Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m). Funct. Integr. Genomics 2, 70–80 (2002).
    Article CAS PubMed Google Scholar
  9. Wicker, T. et al. Analysis of a contiguous 211-kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J. 26, 307–316 (2001).
    Article CAS PubMed Google Scholar
  10. Nigumann, P., Redik, K., Matlik, K. & Speek, M. Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79, 628–634 (2002).
    Article CAS PubMed Google Scholar
  11. Vicient, C.M., Jaaskelainen, M.J., Kalendar, R. & Schulman, A.H. Active retrotransposons are a common feature of grass genomes. Plant Physiol. 125, 1283–1292 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  12. Kuff, E.L. & Lueders, K.K. The intracisternal A-particle gene family: structure and functional aspects. Adv. Cancer Res. 51, 183–276 (1988).
    Article CAS PubMed Google Scholar
  13. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. & Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93, 7783–7788 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  14. Pouteau, S., Huttner, E., Grandbastien, M.A. & Caboche, M. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO J. 10, 1911–1918 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  15. Michaud, E.J. et al. Differential expression of a new dominant agouti allele (_A_iapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8, 1463–1472 (1994).
    Article CAS PubMed Google Scholar
  16. Whitelaw, E. & Martin, D.I.K. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat. Genet. 27, 361–365 (2001).
    Article CAS PubMed Google Scholar
  17. Medstrand, P., Landry, J.R. & Mager, D.L. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J. Biol. Chem. 276, 1896–1903 (2001).
    Article CAS PubMed Google Scholar
  18. Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973–1985 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  19. Lucas, H., Moore, G., Murphy, G. & Flavell, R.B. Inverted repeats in the long terminal repeats of the wheat retrotransposon Wis 2-1A. Mol. Biol. Evol. 9, 716–728 (1992).
    CAS PubMed Google Scholar
  20. Kashkush, K., Feldman, M. & Levy, A.A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160, 1651–1659 (2002).
    CAS PubMed PubMed Central Google Scholar
  21. Shaked, H., Kashkush, K., Ozkan, H., Feldman, M. & Levy, A.A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13, 1749–1759 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  22. Vinogradova, T. et al. Selective differential display of RNAs containing interspersed repeats: analysis of changes in the transcription of HERV-K LTRs in germ cell tumors. Mol. Genet. Genomics 266, 796–805 (2002).
    Article CAS PubMed Google Scholar
  23. Muniz, L.M., Cuadrado, A., Jouve, N. & Gonzalez, J.M. The detection, cloning, and characterisation of WIS 2-1A retrotransposon-like sequences in Triticum aestivum L. and xTriticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44, 979–989 (2001).
    Article CAS PubMed Google Scholar
  24. Hammond, S.M., Caudy, A.A. & Hannon, G.J. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2, 110–119 (2001).
    Article CAS PubMed Google Scholar
  25. Ozkan, H., Levy, A.A. & Feldman, M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops - Triticum) group. Plant Cell 13, 1735–1747 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  26. De Keukeleire, P. et al. Analysis by transposon display of the behavior of the dTph1 element family during ontogeny and inbreeding of petunia hybrida. Mol. Genet. Genomics 265, 72–81 (2001).
    Article CAS PubMed Google Scholar

Download references