Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition (original) (raw)

References

  1. Latham, K.E. Mechanisms and control of embryonic genome activation in mammalian embryos. Int. Rev. Cytol. 193, 71–124 (1999).
    Article CAS Google Scholar
  2. Latham, K.E. & Schultz, R.M. Embryonic genome activation. Front. Biosci. 6, 748–759 (2001).
    Article Google Scholar
  3. Schultz, R.M. Regulation of zygotic gene activation in the mouse. Bioessays 15, 531–538 (1993).
    Article CAS Google Scholar
  4. Aoki, F., Worrad, D.M. & Schultz, R.M. Regulation of transcriptional activity during the first and second cell cycles in the pre-implantation mouse embryo. Dev. Biol. 181, 296–307 (1997).
    Article CAS Google Scholar
  5. Matzuk, M.M., Burns, K., Viveiros, M.M. & Eppig, J. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 2178–2180 (2002).
    Article CAS Google Scholar
  6. Matzuk, M.M. & Lamb, D.J. Genetic dissection of mammalian fertility pathways. Nat. Med. 8, S41–S49 (2002).
    Article CAS Google Scholar
  7. Aasland, R., Gibson, T.J. & Stewart, A.F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56–59 (1995).
    Article CAS Google Scholar
  8. Conover, J.C., Temeles, G.L., Zimmermann, J.W., Burke, B. & Schultz, R.M. Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. Dev. Biol. 144, 392–404 (1991).
    Article CAS Google Scholar
  9. Tong, Z.B. et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268 (2000).
    Article CAS Google Scholar
  10. Howell, C.Y. et al. Genomic imprinting disrupted by a maternal-effect mutation in the Dnmt1 gene. Cell 104, 829–838 (2001).
    Article CAS Google Scholar
  11. Prolla, T.A. et al. Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat. Genet. 18, 276–279 (1998).
    Article CAS Google Scholar
  12. Christians, E., Davis, A.A., Thomas, S.D. & Benjamin, I.J. Maternal effect of Hsf1 on reproductive success. Nature 407, 693–694 (2000).
    Article CAS Google Scholar
  13. Dong, J. et al. Growth differentiation factor 9 is required during early ovarian folliculogenesis. Nature 383, 531–535 (1996).
    Article CAS Google Scholar
  14. Gibbons, R.J. et al. Mutations in transcriptional regulator ATRX establish the functional significance of a PHD-like domain. Nat. Genet. 17, 146–148 (1997).
    Article CAS Google Scholar
  15. Capili, A.D., Schultz, D.C., Rauscher, I.F. & Borden, K.L. Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J. 20, 165–177 (2001).
    Article CAS Google Scholar
  16. Kumar, T.R. et al. Reproductive defects in γ-glutamyl transpeptidase-deficient mice. Endocrinology 141, 4270–4277 (2000).
    Article CAS Google Scholar
  17. Flach, G., Johnson, M.H., Braude, P.R., Taylor, R.A. & Bolton, V.N. The transition from maternal to embryonic control in the two-cell mouse embryo. EMBO J. 1, 681–686 (1982).
    Article CAS Google Scholar
  18. Tong, Z.B., Bondy, C.A., Zhou, J. & Nelson, L.M. A human homologue of mouse Mater, a maternal-effect gene essential for early embryonic development. Hum. Reprod. 17, 903–911 (2002).
    Article CAS Google Scholar
  19. Albrecht, U., Eichele, G., Helms, J.A. & Lu, H.C. Visualization of gene expression patterns by in situ hybridization. in Molecular and Cellular Methods in Developmental Toxicology (ed. Daston, G.P.) 23–48 (CRC Press, Boca Raton, Florida, 1997).
    Google Scholar
  20. Elvin, J.A., Yan, C., Wang, P., Nishimori, K. & Matzuk, M.M. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol. Endocrinol. 13, 1018–1034 (1999).
    Article CAS Google Scholar
  21. Matzuk, M.M. & Bradley, A. Structure of the mouse activin receptor type II gene. Biochem. Biophys. Res. Commun. 185, 404–413 (1992).
    Article CAS Google Scholar
  22. Matzuk, M.M., Finegold, M.J., Su, J.-G.J., Hsueh, A.J.W. & Bradley, A. α-Inhibin is a tumor-suppressor gene with gonadal specificity in mice. Nature 360, 313–319 (1992).
    Article CAS Google Scholar
  23. Bradley, A. Production and analysis of chimeric mice-teratocarcinomas and embryonic stem cells: a practical approach. in Production and Analysis of Chimeric Mice (ed. Robinson, E.J.) 113–151 (Oxford, London, 1987).
    Google Scholar
  24. Eppig, J.J. Mouse oocyte maturation, fertilization, and pre-implantation development in vitro. in A Comparative Methods Approach to the Study of Oocytes and Embryos (ed. Richter, J.D.) 3–9 (Oxford University Press, Oxford, 1999).
    Google Scholar
  25. Yan, W. et al. Identification of Gasz, an evolutionarily conserved gene expressed exclusively in germ cells and encoding a protein with four ankyrin repeats, a sterile-alpha motif, and a basic leucine zipper. Mol. Endocrinol. 16, 1168–1184 (2002).
    CAS PubMed Google Scholar
  26. Ferreira, J. & Carmo-Fonseca, M. Genome replication in early mouse embryos follows a defined temporal and spatial order. J. Cell. Sci. 110, 889–897 (1997).
    CAS PubMed Google Scholar
  27. Yaffe, M.B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348–353 (2001).
    Article CAS Google Scholar
  28. Elvin, J.A., Clark, A.T., Wang, P., Wolfman, N.M. & Matzuk, M.M. Paracrine actions of growth differentiation factor 9 in the mammalian ovary. Mol. Endocrinol. 13, 1035–1048 (1999).
    Article CAS Google Scholar
  29. Pedersen, T. & Peters, H. Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 17, 555–557 (1968).
    Article CAS Google Scholar

Download references