Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination (original) (raw)

References

  1. Raine, C.S. Morphology of myelin and myelination. in Myelin 2nd edn. (ed. P. Morell) 1–50 (Plenum, New York, 1984).
    Google Scholar
  2. Lemke, G. Unwrapping the genes of myelin. Neuron 1, 535–543 (1988).
    Article CAS Google Scholar
  3. Trapp, B.D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).
    Article CAS Google Scholar
  4. Giese, K.P., Martini, R., Lemke, G., Soriano, P. & Schachner, M. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71, 565–576 (1992).
    Article CAS Google Scholar
  5. Gow, A. et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 99, 649–659 (1999).
    Article CAS Google Scholar
  6. Readhead, C. et al. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 48, 703–712 (1987).
    Article CAS Google Scholar
  7. Boison, D., Bussow H., D'Urso, D., Muller, H.W. & Stoffel, W. Adhesive properties of proteolipid protein are responsible for the compaction of CNS myelin sheaths. J. Neurosci. 15, 5502–5513 (1995).
    Article CAS Google Scholar
  8. Rosenbluth, J., Stoffel, W. & Schiff, R. Myelin structure in proteolipid protein (PLP)-null mouse spinal cord. J. Comp. Neurol. 371, 336–344 (1996).
    Article CAS Google Scholar
  9. Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18, 59–70 (1997).
    Article CAS Google Scholar
  10. Griffiths, I.R. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998).
    Article CAS Google Scholar
  11. Sporkel, O., Uschkureit, T., Bussow, H. & Stoffel, W. Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia 37, 19–30 (2002).
    Article Google Scholar
  12. Chandross, K.J. et al. Identification and characterization of early glial progenitors using a transgenic selection strategy. J. Neurosci. 19, 759–774 (1999).
    Article CAS Google Scholar
  13. Vogel, U.S. & Thompson, R.J. Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J. Neurochem. 50, 1667–1677 (1988).
    Article CAS Google Scholar
  14. Sprinkle, T.J. 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit. Rev. Neurobiol. 4, 235–301 (1989).
    CAS PubMed Google Scholar
  15. Tsukada, Y. & Kurihara, T. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Molecular characterization and possible function significance. in Myelin: Biology and Chemistry (ed. Martenson, R.E) 449–480 (CRC Press, Boca Raton, 1992).
    Google Scholar
  16. Yu, W.P., Collarini, E.J., Pringle, N.P. & Richardson, W.D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–1362 (1994).
    Article CAS Google Scholar
  17. Sprinkle, T.J., McMorris, F.A., Yoshino, J. & DeVries, G.H. Differential expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in cultured central, peripheral and extra neural cells. Neurochem. Res. 10, 919–931 (1985).
    Article CAS Google Scholar
  18. Giulian, D. & Moore, S. Identification of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the vertebrate retina. J. Biol. Chem. 255, 5993–5995 (1980).
    CAS PubMed Google Scholar
  19. Scherer, S.S. et al. Differential regulation of 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene during oligodendrocyte development. Neuron 12, 1363–1375 (1994).
    Article CAS Google Scholar
  20. O'Neill, R.C., Minuk, J., Cox, M.E., Braun, P.E. & Gravel, M. CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides. J. Neurosci. Res. 50, 248–257 (1997).
    Article CAS Google Scholar
  21. Agrawal, H.C., Sprinkle, T.J. & Agrawal, D. 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the central nervous system is fatty-acylated by thioester linkage. J. Biol. Chem. 265, 11849–11853 (1990).
    CAS PubMed Google Scholar
  22. Braun, P.E., De Angelis, D., Shtybel, W.W. & Bernier, L. Isoprenoid modification permits 2′,3′-cyclic nucleotide 3′-phosphodiesterase to bind to membranes. J. Neurosci. Res. 30, 540–544 (1991).
    Article CAS Google Scholar
  23. De Angelis, D.A. & Braun, P.E. Isoprenylation of brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase modulates cell morphology. J. Neurosci. Res. 39, 386–397 (1994).
    Article CAS Google Scholar
  24. Nishizawa, Y., Kurihara, T., Masuda, T. & Takahashi, Y. Immunohistochemical localization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in adult bovine cerebrum and cerebellum. Neurochem. Res. 10, 1107–1118 (1985).
    Article CAS Google Scholar
  25. Kurihara, T. & Tsukada, Y. Regional and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in central nervous system. J. Neurochem. 14, 1167–1174 (1967).
    Article CAS Google Scholar
  26. Braun, P.E., Sandillon, F., Edwards, A., Matthieu, J.M. & Privat, A. Immunocytochemical localization by electron microscopy of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J. Neurosci. 8, 3057–3066 (1988).
    Article CAS Google Scholar
  27. Trapp, B.D., Bernier, L., Andrews, S.B., & Colman, D.R. Cellular and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase and its mRNA in the rat central nervous system J. Neurochem. 51, 859–868 (1988).
    Article CAS Google Scholar
  28. Heaton, P.A. & Eckstein, F. Diastereomeric specificity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Nucleic. Acids. Res. 24, 850–853 (1996).
    Article CAS Google Scholar
  29. McFerran, B.W. & Burgoyne, R.D. 2′,3′-cyclic nucleotide 3′-phosphodiesterase is associated with mitochondria in diverse adrenal cell types. J. Cell Sci. 110, 2979–2985 (1997).
    CAS PubMed Google Scholar
  30. Laezza, C., Wolff, J. & Bifulco, M. Identification of a 48-kDa prenylated protein that associates with microtubules as 2′,3′-cyclic nucleotide 3′-phosphodiesterase in FRTL-5 Zellen. FEBS Lett. 413, 260–264 (1997).
    Article CAS Google Scholar
  31. Bifulco, M., Laezza, C., Stingo, S. & Wolff, J. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc. Natl. Acad. Sci. USA 99, 1807–1812 (2002).
    Article CAS Google Scholar
  32. De Angelis, D.A., Cox, M., Gao, E. & Braun, P.E. Cellular and molecular characteristics of CNP suggest regulatory mechanism in myelinogenesis. in A Multidisciplinary Approach to Myelin Diseases (ed. Salvati, S.) 49–58 (Plenum, New York, 1994).
    Chapter Google Scholar
  33. Gravel, M. et al. Overexpression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol. Cell Neurosci. 7, 453–466 (1996).
    Article CAS Google Scholar
  34. Yin, X., Peterson, J., Gravel, M., Braun, P.E. & Trapp, B.D. CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J. Neurosci. Res. 50, 238–247 (1997).
    Article CAS Google Scholar
  35. Akagi, K. et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res. 25, 1766–1773 (1997).
    Article CAS Google Scholar
  36. Bennett, S.A., Stevenson, B., Staines, W.A., & Roberts, D.C. Periodic acid-Schiff (PAS)-positive deposits in brain following kainic acid-induced seizures: relationships to fos induction, neuronal necrosis, reactive gliosis, and blood-brain barrier breakdown. Acta Neuropathol. (Berl.) 89, 126–138 (1995).
    Article CAS Google Scholar
  37. Nave, K.-A. Neurological mouse mutants: a molecular genetic analysis of myelin proteins. in Glial Cell Development 2nd edn. (ed. Jessen, J & Richardson, W.) 177–208 (Oxford University Press, New York, 2002).
    Google Scholar
  38. Boison, D. & Stoffel, W. Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proc. Natl. Acad. Sci. USA 91, 11709–11713 (1994).
    Article CAS Google Scholar
  39. Ballestero, R.P., Dybowski, J.A., Levy, G., Agranoff, B.W. & Uhler, M.D. Cloning and characterization of zRICH, a 2′3′-cyclic nucleotide 3′-phosphodiesterase induced during zebrafish optic nerve regeneration. J. Neurochem. 72, 1362–1371 (1999).
    Article CAS Google Scholar
  40. Lee, J., Gravel, M. & Braun, P.E. Is the interaction of CNP with tubulin and microtubules required for process extension in oligodendrocytes? J. Neurochem. 81 suppl.1, 65 (2002).
    Google Scholar
  41. Wujek, J.R. et al. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J. Neuropathol. Exp. Neurol. 61, 23–32 (2002).
    Article Google Scholar
  42. Joyner, A.L. Gene Targeting. A Practical Approach. (Oxford University Press, New York, 1993).
    Google Scholar
  43. Sereda, M. et al. A transgenic rat model of Charcot–Marie–Tooth disease. Neuron 16, 1049–1060 (1996).
    Article CAS Google Scholar
  44. Norton, W.T. & Poduslo, S.E. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21, 749–757 (1973).
    Article CAS Google Scholar
  45. Sogin, D.C. 2′,3′-Cyclic NADP as a substrate for 2′,3′-cyclic nucleotide 3′-phosphohydrolase. J. Neurochem. 27, 1333–1337 (1976).
    Article CAS Google Scholar
  46. Gallyas, F. Silver staining of myelin by means of physical development. Neurol. Res. 1, 203–209 (1979).
    Article CAS Google Scholar
  47. Hotchkiss, R.D. A microchemical reaction resulting in the staining of polysaccharides structure in fixed tissue preparations. Arch. Biochem. 16, 131–141 (1948).
    CAS PubMed Google Scholar
  48. Griffiths, I.R., Duncan, I.D. & McCulloch, M. Shaking pup: a disorder of central myelination in the spaniel dog. II. Ultrastructural observations on the white matter of cervical spinal cord. J. Neurocytol. 10, 847–858 (1981).
    Article CAS Google Scholar

Download references