Trapp, B.D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338, 278–285 (1998). ArticleCAS Google Scholar
Giese, K.P., Martini, R., Lemke, G., Soriano, P. & Schachner, M. Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell71, 565–576 (1992). ArticleCAS Google Scholar
Gow, A. et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell99, 649–659 (1999). ArticleCAS Google Scholar
Readhead, C. et al. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell48, 703–712 (1987). ArticleCAS Google Scholar
Boison, D., Bussow H., D'Urso, D., Muller, H.W. & Stoffel, W. Adhesive properties of proteolipid protein are responsible for the compaction of CNS myelin sheaths. J. Neurosci.15, 5502–5513 (1995). ArticleCAS Google Scholar
Rosenbluth, J., Stoffel, W. & Schiff, R. Myelin structure in proteolipid protein (PLP)-null mouse spinal cord. J. Comp. Neurol.371, 336–344 (1996). ArticleCAS Google Scholar
Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron18, 59–70 (1997). ArticleCAS Google Scholar
Griffiths, I.R. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science280, 1610–1613 (1998). ArticleCAS Google Scholar
Sporkel, O., Uschkureit, T., Bussow, H. & Stoffel, W. Oligodendrocytes expressing exclusively the DM20 isoform of the proteolipid protein gene: myelination and development. Glia37, 19–30 (2002). Article Google Scholar
Chandross, K.J. et al. Identification and characterization of early glial progenitors using a transgenic selection strategy. J. Neurosci.19, 759–774 (1999). ArticleCAS Google Scholar
Vogel, U.S. & Thompson, R.J. Molecular structure, localization, and possible functions of the myelin-associated enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase. J. Neurochem.50, 1667–1677 (1988). ArticleCAS Google Scholar
Sprinkle, T.J. 2′,3′-cyclic nucleotide 3′-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit. Rev. Neurobiol.4, 235–301 (1989). CASPubMed Google Scholar
Tsukada, Y. & Kurihara, T. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Molecular characterization and possible function significance. in Myelin: Biology and Chemistry (ed. Martenson, R.E) 449–480 (CRC Press, Boca Raton, 1992). Google Scholar
Yu, W.P., Collarini, E.J., Pringle, N.P. & Richardson, W.D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron12, 1353–1362 (1994). ArticleCAS Google Scholar
Sprinkle, T.J., McMorris, F.A., Yoshino, J. & DeVries, G.H. Differential expression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in cultured central, peripheral and extra neural cells. Neurochem. Res.10, 919–931 (1985). ArticleCAS Google Scholar
Giulian, D. & Moore, S. Identification of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the vertebrate retina. J. Biol. Chem.255, 5993–5995 (1980). CASPubMed Google Scholar
Scherer, S.S. et al. Differential regulation of 2′,3′-cyclic nucleotide 3′-phosphodiesterase gene during oligodendrocyte development. Neuron12, 1363–1375 (1994). ArticleCAS Google Scholar
O'Neill, R.C., Minuk, J., Cox, M.E., Braun, P.E. & Gravel, M. CNP2 mRNA directs synthesis of both CNP1 and CNP2 polypeptides. J. Neurosci. Res.50, 248–257 (1997). ArticleCAS Google Scholar
Agrawal, H.C., Sprinkle, T.J. & Agrawal, D. 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the central nervous system is fatty-acylated by thioester linkage. J. Biol. Chem.265, 11849–11853 (1990). CASPubMed Google Scholar
Braun, P.E., De Angelis, D., Shtybel, W.W. & Bernier, L. Isoprenoid modification permits 2′,3′-cyclic nucleotide 3′-phosphodiesterase to bind to membranes. J. Neurosci. Res.30, 540–544 (1991). ArticleCAS Google Scholar
De Angelis, D.A. & Braun, P.E. Isoprenylation of brain 2′,3′-cyclic nucleotide 3′-phosphodiesterase modulates cell morphology. J. Neurosci. Res.39, 386–397 (1994). ArticleCAS Google Scholar
Nishizawa, Y., Kurihara, T., Masuda, T. & Takahashi, Y. Immunohistochemical localization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in adult bovine cerebrum and cerebellum. Neurochem. Res.10, 1107–1118 (1985). ArticleCAS Google Scholar
Kurihara, T. & Tsukada, Y. Regional and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in central nervous system. J. Neurochem.14, 1167–1174 (1967). ArticleCAS Google Scholar
Braun, P.E., Sandillon, F., Edwards, A., Matthieu, J.M. & Privat, A. Immunocytochemical localization by electron microscopy of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J. Neurosci.8, 3057–3066 (1988). ArticleCAS Google Scholar
Trapp, B.D., Bernier, L., Andrews, S.B., & Colman, D.R. Cellular and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphodiesterase and its mRNA in the rat central nervous system J. Neurochem.51, 859–868 (1988). ArticleCAS Google Scholar
Heaton, P.A. & Eckstein, F. Diastereomeric specificity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase. Nucleic. Acids. Res.24, 850–853 (1996). ArticleCAS Google Scholar
McFerran, B.W. & Burgoyne, R.D. 2′,3′-cyclic nucleotide 3′-phosphodiesterase is associated with mitochondria in diverse adrenal cell types. J. Cell Sci.110, 2979–2985 (1997). CASPubMed Google Scholar
Laezza, C., Wolff, J. & Bifulco, M. Identification of a 48-kDa prenylated protein that associates with microtubules as 2′,3′-cyclic nucleotide 3′-phosphodiesterase in FRTL-5 Zellen. FEBS Lett.413, 260–264 (1997). ArticleCAS Google Scholar
Bifulco, M., Laezza, C., Stingo, S. & Wolff, J. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: a membrane-bound, microtubule-associated protein and membrane anchor for tubulin. Proc. Natl. Acad. Sci. USA99, 1807–1812 (2002). ArticleCAS Google Scholar
De Angelis, D.A., Cox, M., Gao, E. & Braun, P.E. Cellular and molecular characteristics of CNP suggest regulatory mechanism in myelinogenesis. in A Multidisciplinary Approach to Myelin Diseases (ed. Salvati, S.) 49–58 (Plenum, New York, 1994). Chapter Google Scholar
Gravel, M. et al. Overexpression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol. Cell Neurosci.7, 453–466 (1996). ArticleCAS Google Scholar
Yin, X., Peterson, J., Gravel, M., Braun, P.E. & Trapp, B.D. CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J. Neurosci. Res.50, 238–247 (1997). ArticleCAS Google Scholar
Akagi, K. et al. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res.25, 1766–1773 (1997). ArticleCAS Google Scholar
Bennett, S.A., Stevenson, B., Staines, W.A., & Roberts, D.C. Periodic acid-Schiff (PAS)-positive deposits in brain following kainic acid-induced seizures: relationships to fos induction, neuronal necrosis, reactive gliosis, and blood-brain barrier breakdown. Acta Neuropathol. (Berl.)89, 126–138 (1995). ArticleCAS Google Scholar
Nave, K.-A. Neurological mouse mutants: a molecular genetic analysis of myelin proteins. in Glial Cell Development 2nd edn. (ed. Jessen, J & Richardson, W.) 177–208 (Oxford University Press, New York, 2002). Google Scholar
Boison, D. & Stoffel, W. Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice. Proc. Natl. Acad. Sci. USA91, 11709–11713 (1994). ArticleCAS Google Scholar
Ballestero, R.P., Dybowski, J.A., Levy, G., Agranoff, B.W. & Uhler, M.D. Cloning and characterization of zRICH, a 2′3′-cyclic nucleotide 3′-phosphodiesterase induced during zebrafish optic nerve regeneration. J. Neurochem.72, 1362–1371 (1999). ArticleCAS Google Scholar
Lee, J., Gravel, M. & Braun, P.E. Is the interaction of CNP with tubulin and microtubules required for process extension in oligodendrocytes? J. Neurochem.81 suppl.1, 65 (2002). Google Scholar
Wujek, J.R. et al. Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. J. Neuropathol. Exp. Neurol.61, 23–32 (2002). Article Google Scholar
Joyner, A.L. Gene Targeting. A Practical Approach. (Oxford University Press, New York, 1993). Google Scholar
Sereda, M. et al. A transgenic rat model of Charcot–Marie–Tooth disease. Neuron16, 1049–1060 (1996). ArticleCAS Google Scholar
Norton, W.T. & Poduslo, S.E. Myelination in rat brain: method of myelin isolation. J. Neurochem.21, 749–757 (1973). ArticleCAS Google Scholar
Sogin, D.C. 2′,3′-Cyclic NADP as a substrate for 2′,3′-cyclic nucleotide 3′-phosphohydrolase. J. Neurochem.27, 1333–1337 (1976). ArticleCAS Google Scholar
Gallyas, F. Silver staining of myelin by means of physical development. Neurol. Res.1, 203–209 (1979). ArticleCAS Google Scholar
Hotchkiss, R.D. A microchemical reaction resulting in the staining of polysaccharides structure in fixed tissue preparations. Arch. Biochem.16, 131–141 (1948). CASPubMed Google Scholar
Griffiths, I.R., Duncan, I.D. & McCulloch, M. Shaking pup: a disorder of central myelination in the spaniel dog. II. Ultrastructural observations on the white matter of cervical spinal cord. J. Neurocytol.10, 847–858 (1981). ArticleCAS Google Scholar