Kouzarides, T. Histone methylation in transcriptional control. Curr. Opin. Genet. Dev.12, 198–209 (2002). ArticleCASPubMed Google Scholar
Varga-Weisz, P. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene20, 3076–3085 (2001). ArticleCASPubMed Google Scholar
Kingston, R.E. & Narlikar, G.J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev.13, 2339–2352 (1999). ArticleCASPubMed Google Scholar
Fry, C.J. & Peterson, C.L. Chromatin remodeling enzymes: who's on first? Curr. Biol.11, R185–R197 (2001). ArticleCASPubMed Google Scholar
Chan, H.M. & La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci.114, 2363–2373 (2001). CASPubMed Google Scholar
Bulger, M., Sawado, T., Schubeler, D. & Groudine, M. ChIPs of the β-globin locus: unraveling gene regulation within an active domain. Curr. Opin. Genet. Dev.12, 170–177 (2002). ArticleCASPubMed Google Scholar
Noma, K., Allis, C.D. & Grewal, S.I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science293, 1150–1155 (2001). ArticleCASPubMed Google Scholar
Schubeler, D. et al. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev.14, 940–950 (2000). CASPubMedPubMed Central Google Scholar
Litt, M.D., Simpson, M., Recillas-Targa, F., Prioleau, M.N. & Felsenfeld, G. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J.20, 2224–2235 (2001). ArticleCASPubMedPubMed Central Google Scholar
Litt, M.D., Simpson, M., Gaszner, M., Allis, C.D. & Felsenfeld, G. Correlation between histone lysine methylation and developmental changes at the chicken β-globin locus. Science293, 2453–2455 (2001). ArticleCASPubMed Google Scholar
Francastel, C., Schubeler, D., Martin, D.I. & Groudine, M. Nuclear compartmentalization and gene activity. Nat. Rev. Mol. Cell Biol.1, 137–143 (2000). ArticleCASPubMed Google Scholar
Dickinson, L.A., Joh, T., Kohwi, Y. & Kohwi-Shigematsu, T. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell70, 631–645 (1992). ArticleCASPubMed Google Scholar
Kohwi-Shigematsu, T. & Kohwi, Y. Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry29, 9551–9560 (1990). ArticleCASPubMed Google Scholar
Bode, J. et al. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science255, 195–197 (1992). ArticleCASPubMed Google Scholar
Cockerill, P.N., Yuen, M.H. & Garrard, W.T. The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J. Biol. Chem.262, 5394–5397 (1987). CASPubMed Google Scholar
Forrester, W.C., van Genderen, C., Jenuwein, T. & Grosschedl, R. Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science265, 1221–1225 (1994). ArticleCASPubMed Google Scholar
Jenuwein, T. et al. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature385, 269–272 (1997). ArticleCASPubMed Google Scholar
Lichtenstein, M., Keini, G., Cedar, H. & Bergman, Y. B cell-specific demethylation: a novel role for the intronic kappa chain enhancer sequence. Cell76, 913–923 (1994). ArticleCASPubMed Google Scholar
Kirillov, A. et al. A role for nuclear NFκB in B-cell-specific demethylation of the Igκ locus. Nat. Genet.13, 435–441 (1996). ArticleCASPubMed Google Scholar
Fernandez, L.A., Winkler, M. & Grosschedl, R. Matrix attachment region–dependent function of the immunoglobulin mu enhancer involves histone acetylation at a distance without changes in enhancer occupancy. Mol. Cell. Biol.21, 196–208 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nakagomi, K., Kohwi, Y., Dickinson, L.A. & Kohwi-Shigematsu, T. A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol. Cell. Biol.14, 1852–1860 (1994). ArticleCASPubMedPubMed Central Google Scholar
Dickinson, L.A., Dickinson, C.D. & Kohwi-Shigematsu, T. An atypical homeodomain in SATB1 promotes specific recognition of the key structural element in a matrix attachment region. J. Biol. Chem.272, 11463–11470 (1997). ArticleCASPubMed Google Scholar
Galande, S., Dickinson, L.A., Mian, I.S., Sikorska, M. & Kohwi-Shigematsu, T. SATB1 cleavage by caspase 6 disrupts PDZ domain–mediated dimerization, causing detachment from chromatin early in T-cell apoptosis. Mol. Cell. Biol.21, 5591–5604 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hawkins, S.M., Kohwi-Shigematsu, T. & Skalnik, D.G. The matrix attachment region–binding protein SATB1 interacts with multiple elements within the gp91phox promoter and is down-regulated during myeloid differentiation. J. Biol. Chem.276, 44472–44480 (2001). ArticleCASPubMed Google Scholar
Alvarez, J.D. et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev.14, 521–535 (2000). CASPubMedPubMed Central Google Scholar
Dickinson, L.A. & Kohwi-Shigematsu, T. Nucleolin is a matrix attachment region DNA-binding protein that specifically recognizes a region with high base-unpairing potential. Mol. Cell. Biol.15, 456–465 (1995). ArticleCASPubMedPubMed Central Google Scholar
Galande, S. & Kohwi-Shigematsu, T. Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J. Biol. Chem.274, 20521–20528 (1999). ArticleCASPubMed Google Scholar
Liu, W.M., Guerra-Vladusic, F.K., Kurakata, S., Lupu, R. & Kohwi-Shigematsu, T. HMG-I(Y) recognizes base-unpairing regions of matrix attachment sequences and its increased expression is directly linked to metastatic breast cancer phenotype. Cancer Res.59, 5695–5703 (1999). CASPubMed Google Scholar
Herrscher, R.F. et al. The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev.9, 3067–3082 (1995). ArticleCASPubMed Google Scholar
de Belle, I., Cai, S. & Kohwi-Shigematsu, T. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J. Cell Biol.141, 335–348 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature419, 641–645 (2002). ArticleCASPubMed Google Scholar
Kohwi-Shigematsu, T. & Kohwi, Y. Detection of non-B-DNA structures at specific sites in supercoiled plasmid DNA and chromatin with haloacetaldehyde and diethyl pyrocarbonate. Methods Enzymol.212, 155–180 (1992). ArticleCASPubMed Google Scholar
Kohwi-Shigematsu, T., deBelle, I., Dickinson, L.A., Galande, S. & Kohwi, Y. Identification of base-unpairing region-binding proteins and characterization of their in vivo binding sequences. Methods Cell Biol.53, 323–354 (1998). ArticleCASPubMed Google Scholar
Cai, S. & Kohwi-Shigematsu, T. Intranuclear relocalization of matrix binding sites during T cell activation detected by amplified fluorescence in situ hybridization. Methods19, 394–402 (1999). ArticleCASPubMed Google Scholar
Riegel, J.S., Richie, E.R. & Allison, J.P. Nuclear events after activation of CD4+8+ thymocytes. J. Immunol.144, 3611–3618 (1990). CASPubMed Google Scholar
Douglas, N.C., Jacobs, H., Bothwell, A.L. & Hayday, A.C. Defining the specific physiological requirements for c-Myc in T cell development. Nat. Immunol.2, 307–315 (2001). ArticleCASPubMed Google Scholar
Sanders, J., Maassen, J.A. & Moller, W. Elongation factor-1 messenger-RNA levels in cultured cells are high compared to tissue and are not drastically affected further by oncogenic transformation. Nucleic Acids Res.20, 5907–5910 (1992). ArticleCASPubMedPubMed Central Google Scholar
Kohwi-Shigematsu, T., Maass, K. & Bode, J. A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry36, 12005–12010 (1997). ArticleCASPubMed Google Scholar
Liu, J. et al. The matrix attachment region–binding protein SATB1 participates in negative regulation of tissue-specific gene expression. Mol. Cell. Biol.17, 5275–5287 (1997). ArticleCASPubMedPubMed Central Google Scholar
Bell, A.C., West, A.G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell98, 387–396 (1999). ArticleCASPubMed Google Scholar
Brown, K.E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell91, 845–854 (1997). ArticleCASPubMed Google Scholar
Gerasimova, T.I., Byrd, K. & Corces, V.G. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell6, 1025–1035 (2000). ArticleCASPubMed Google Scholar
Duncan, R. et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev.8, 465–480 (1994). ArticleCASPubMed Google Scholar
Kohwi, Y. & Panchenko, Y. Transcription-dependent recombination induced by triple-helix formation. Genes Dev.7, 1766–1778 (1993). ArticleCASPubMed Google Scholar
Nielsen, S.J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature412, 561–565 (2001). ArticleCASPubMed Google Scholar
Wreggett, K.A. et al. A mammalian homologue of Drosophila heterochromatin protein 1 (HP1) is a component of constitutive heterochromatin. Cytogenet. Cell Genet.66, 99–103 (1994). ArticleCASPubMed Google Scholar