Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease (original) (raw)
References
Cooper, D.N. & Krawczak, M. Human Gene Mutation (BIOS Scientific, Oxford, 1993). Google Scholar
Bedell, M.A., Jenkins, N.A. & Copeland, N.G. Good genes in bad neighbourhoods. Nat. Genet.12, 229–232 (1996). ArticleCAS Google Scholar
Kleinjan, D.-J. & van Heyningen, V. Position effect in human genetic disease. Hum. Mol. Genet.7, 1611–1618 (1998). ArticleCAS Google Scholar
Steinberg, M.H., Forget, B.G., Higgs, D.R. & Nagel, R.L. Disorders of Hemoglobin (Cambridge University Press, Cambridge, 2001). Google Scholar
Barbour, V.M. et al. α-thalassemia resulting from a negative chromosomal position effect. Blood96, 800–807 (2000). CASPubMed Google Scholar
Flint, J. et al. The relationship between chromosome structure and function at a human telomeric region. Nat. Genet.15, 252–257 (1997). ArticleCAS Google Scholar
Bird, A.P., Taggart, M.H., Nicholls, R.D. & Higgs, D.R. Non-methylated CpG-rich islands at the human α-globin locus: implications for evolution of the α-globin pseudogene. EMBO J.6, 999–1004 (1987). ArticleCAS Google Scholar
Smith, Z.E. & Higgs, D.R. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum. Mol. Genet.8, 1373–1386 (1999). ArticleCAS Google Scholar
Brown, K.E. et al. Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells. Nat. Cell Biol.3, 602–606 (2001). ArticleCAS Google Scholar
Tufarelli, C., Frischauf, A.-M., Hardison, R., Flint, J. & Higgs, D.R. Characterisation of a widely expressed gene (LUC7-LIKE) defining the centromeric boundary of the human α-globin domain. Genomics71, 307–314 (2001). ArticleCAS Google Scholar
Wutz, A. et al. Imprinted expression of the lgf2r gene depends on an intronic CpG island. Nature389, 745–749 (1997). ArticleCAS Google Scholar
Smilinich, N.J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome. Proc. Natl. Acad. Sci. USA96, 8064–8069 (1999). ArticleCAS Google Scholar
Rougeulle, C., Cardoso, C., Fontes, M., Colleaux, L. & Lalande, M. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat. Genet.19, 15–16 (1998). ArticleCAS Google Scholar
Hayward, B.E. & Bonthron, D.T. An imprinted antisense transcript at the human GNAS1 locus. Hum. Mol. Genet.9, 835–841 (2000). ArticleCAS Google Scholar
Wroe, S.F. et al. An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc. Natl. Acad. Sci. USA97, 3342–3346 (2000). ArticleCAS Google Scholar
Lee, J.T. & Lu, N. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell99, 47–57 (1999). ArticleCAS Google Scholar
Higgs, D.R. et al. A major positive regulatory region located far upstream of the human α-globin gene locus. Genes Dev.4, 1588–1601 (1990). ArticleCAS Google Scholar
Sharpe, J.A. et al. Analysis of the human α-globin gene cluster in transgenic mice. Proc. Natl. Acad. Sci. USA90, 11262–11266 (1993). ArticleCAS Google Scholar
Higgs, D.R., Sharpe, J.A. & Wood, W.G. Understanding α-globin gene expression: a step towards effective gene therapy. Semin. Hematol.35, 93–104 (1998). CASPubMed Google Scholar
Matzke, M., Matzke, A.J.M. & Kooter, J.M. RNA: guiding gene silencing. Science293, 1080–1083 (2001). ArticleCAS Google Scholar
Epstein, C.J., Smith, S., Travis, B. & Tucker, G. Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature274, 500–503 (1978). ArticleCAS Google Scholar
Monk, M. & Harper, M.I. Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature281, 311–313 (1979). ArticleCAS Google Scholar
Martin, G.R. et al. X-chromosome inactivation during differentiation of female teratocarcinoma stem cells in vitro. Nature271, 829–333 (1978). Google Scholar
Panning, B., Dausman, J. & Jaenisch, R. X-chromosome inactivation is mediated by Xist RNA stabilization. Cell90, 907–916 (1997). ArticleCAS Google Scholar
Sheardown, S.A. et al. Stabilization of Xist RNA mediates initiation of X-chromosome inactivation. Cell91, 99–107 (1997). ArticleCAS Google Scholar
Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature326, 292–295 (1987). ArticleCAS Google Scholar
Daniels, R., Lowell, S., Bolton, V. & Monk, M. Transcription of tissue-specific genes in human preimplantation embryos. Hum. Reprod.12, 2251–2256 (1997). ArticleCAS Google Scholar
Schorpp, M. et al. The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res.24, 1787–1788 (1996). ArticleCAS Google Scholar
Sleutels, F., Zwart, R. & Barlow, D.P. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature41, 810–813 (2002). Article Google Scholar
Sleutels, F., Barlow, D.P. & Lyle, R. The uniqueness of the imprinting mechanism. Curr. Opin. Genet. Dev.10, 229–233 (2000). ArticleCAS Google Scholar
Lee, J.T. & Jaenisch, R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature386, 275–279 (1997). ArticleCAS Google Scholar
Lee, J.T., Davidow, L.S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat. Genet.21, 400–404 (1999). ArticleCAS Google Scholar
Futscher, B.W. et al. Role for DNA methylation in the control of cell type-specific maspin expression. Nat. Genet.31, 175–179 (2002). ArticleCAS Google Scholar
Ehrlich, M. DNA hypomethylation and cancer. in DNA Alternations in Cancer (ed. Ehrlich, M.) 273–291 (Eaton, Natick, Massachusetts, 2000). Google Scholar
Baylin, S.B. & Herman, J.G. Epigenetics and loss of gene function in cancer. in DNA Alternations in Cancer (ed. Ehrlich, M.) 293–309 (Eaton, Natick, Massachusetts, 2000). Google Scholar
Rombel, I. et al. Transcriptional activation of human adult α-globin genes by hypersensitive site-40 enhancer: function of nuclear factor-binding motifs occupied in erythroid cells. Proc. Natl. Acad. Sci. USA92, 6454–6458 (1995). ArticleCAS Google Scholar
Mao, X., Fujiwara, Y., Chapdelaine, A., Yang, H. & Orkin, S.H. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood97, 324–326 (2001). ArticleCAS Google Scholar
Spivak, J.L., Toretti, D. & Dickerman, H.W. Effect of phenylhydrazine-induced hemolytic anemia on nuclear RNA polymerase activity of the mouse spleen. Blood42, 257–266 (1973). CASPubMed Google Scholar
Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell65, 1153–1163 (1991). ArticleCAS Google Scholar
Keller, G., Kennedy, M., Papayannopoulou, T. & Wiles, M.V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol.13, 473–486 (1993). ArticleCAS Google Scholar
Clark, S.J., Harrison, J., Paul, C.L. & Frommer, M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res.11, 2990–2997 (1994). Google Scholar
Kulozik, A.E., Kar, B.C., Serjeant, G.R., Serjeant, B.E. & Weatherall, D.J. The molecular basis of α-thalassemia in India. Its interaction with the sickle cell gene. Blood71, 467–472 (1988). CASPubMed Google Scholar
Fei, Y.J., Fujita, S. & Huisman, T.H.J. Two different theta (θ)-globin gene deletions observed among black newborn babies. Br. J. Haematol.68, 249–254 (1988). ArticleCAS Google Scholar