Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver (original) (raw)

References

  1. Ellis, R.E., Yuan, J. & Horvitz, H.R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–698 (1991).
    Article CAS Google Scholar
  2. Raff, M.C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).
    Article CAS Google Scholar
  3. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).
    Article CAS Google Scholar
  4. Oehm, A. et al. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily: sequence identity with the Fas antigen. J. biol. Chem. 267, 10709–10715 (1992).
    CAS Google Scholar
  5. Watanabe-Fukunaga, R. et al. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol. 148, 1274–1279 (1992).
    CAS PubMed Google Scholar
  6. Suda, T., Takahashi, T., Golstein, R. & Nagata, S. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).
    Article CAS Google Scholar
  7. Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. exp. Med. 169, 1747–1756 (1989).
    Article CAS Google Scholar
  8. Trauth, B.C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).
    Article CAS Google Scholar
  9. Suda, T. et al. Expression of the Fas ligand in T-cell-lineage. J. Immunol. 154, 3806–3813 (1995).
    CAS PubMed Google Scholar
  10. Vignaux, F. et al. TCR/CD3 coupling to Fas-based cytotoxicity. J. exp. Med. 181, 781–786 (1995).
    Article CAS Google Scholar
  11. Kägi, D. et al. Fas and perforin pathway as major mechanisms of T cell-mediated cytotoxicity. Science 265, 528–530 (1994).
    Article Google Scholar
  12. Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J. T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994).
    Article CAS Google Scholar
  13. Rouvier, E., Luciani, M.-F. & Golstein, R. Fas involvement in Ca2+− independent T cell-mediated cytotoxicity. J. exp. Med. 177, 195–200 (1993).
    Article CAS Google Scholar
  14. Alderson, M.R. et al. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. exp. Med. 181, 71–77 (1995).
    Article CAS Google Scholar
  15. Ju, S.-T. et al. Fas (CD95)/FasL interaction required for programmed cell death after T-cell activation. Nature 373, 444–448 (1995).
    Article CAS Google Scholar
  16. Russell, J.H., Rush, B., Weaver, C. & Wang, R. Mature T cells of autoimmune _Ipr/lpr_mice have a defect in antigen-stimulated suicide. Proc. natn. Acad. Sci. U.S.A. 90, 4409–4413 (1993).
    Article CAS Google Scholar
  17. Singer, G.G. & Abbas, A.K., Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1, 365–371 (1994).
    Article CAS Google Scholar
  18. Nagata, S. & Suda, T. Fas and Fas ligand: Ipr and gld mutations. Immunol. Today 16, 39–43 (1995).
    Article CAS Google Scholar
  19. Nagata, S. & Golstein, P., Fas death factor. Science 267, 1449–1456 (1995).
    Article CAS Google Scholar
  20. Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of Ipr mice. Proc. natn. Acad. Sci. U.S.A. 90, 1756–1760 (1993).
    Article CAS Google Scholar
  21. Kobayashi, S., Hirano, T., Kakinuma, M. & Uede, T. Transcriptional repression and differential splicing of Fas mRNA by early transposon (ETn) insertion in autoimmune LPR mice. Biochem. biophys. Res. Commun. 191, 617–624 (1993).
    Article CAS Google Scholar
  22. Chu, B.J.-L., Drappa, J., Parnassa, A. & Elkon, K.B. The defect in Fas mRNA expression in MRL/Ipr mice is associated with insertion of the retrotransposon, ETn. J. exp. Med. 178, 723–730 (1993).
    Article CAS Google Scholar
  23. Wu, J., Zhou, T., He, J. & Mountz, J.D. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J. exp. Med. 178, 461–468 (1993).
    Article CAS Google Scholar
  24. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).
    Article CAS Google Scholar
  25. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).
    Article CAS Google Scholar
  26. Mariani, S.M., Matiba, B., Armandola, E.A. & Krammer, R.H., APO-1/Fas (CD95) receptor is expressed in homozygous MRL/lpr mice. Eur. J. Immunol. 24, 3119–3123 (1994).
    Article CAS Google Scholar
  27. Cohen, R.L. & Eisenberg, R.A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 9, 243–269 (1991).
    Article CAS Google Scholar
  28. Ni, R. et al. Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp. Cell Res. 215, 332–337 (1995).
    Article Google Scholar
  29. Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–809 (1993).
    Article CAS Google Scholar
  30. Itoh, N. & Nagata, S. A novel protein domain required for apoptosis: mutational analysis of human Fas antigen. J. biol. Chem. 268, 10932–10937 (1993).
    CAS Google Scholar
  31. Yagi, T. et al. A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal. Biochem. 214, 77–86 (1993).
    Article CAS Google Scholar
  32. Izui, S. et al. Induction of various autoantibodies by mutant gene Ipr in several strains of mice. J. Immunol. 133, 227–233 (1984).
    CAS PubMed Google Scholar
  33. Ogasawara, J., Suda, T. & Nagata, S. Selective apoptosis of CD4+ CD8+ thymocytes by the anti-Fas antibody. J. exp. Med. 181, 485–491 (1995).
    Article CAS Google Scholar
  34. Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J. 14, 1129–1135 (1995).
    Article CAS Google Scholar
  35. Benedetti, A., Jezequel, A.M. & Orlandi, F. Preferential distribution of apoptotic bodies in acinar zone 3 of normal human and rat liver. J. Hepatol. 7, 319–324 (1988).
    Article CAS Google Scholar
  36. Benedetti, A., Jezequel, A.M. & Orlandi, F. A quantitative evaluation of apoptotic bodies in rat liver. Liver 8, 172–177 (1988).
    Article CAS Google Scholar
  37. Arber, N., Zajicek, G. & Ariel, I. The streaming liver II. Hepatocyte life history. Liver 8, 80–87 (1988).
    Article CAS Google Scholar
  38. Andrew, W., Brown, H.M. & Johnson, J.B. Senile changes in the liver of mouse and man. Am. J. Anat. 72, 199–221 (1943).
    Article Google Scholar
  39. Epstain, C.J. & Andrew, W. Nuclear ploidy in mammalian parenchyma! liver cells. Nature 214, 1050–1051 (1967).
    Article Google Scholar
  40. McWhir, J., Selfridge, J., Harrison, D.J., Squires, S. & Melton, D.W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Alaftlre Genet. 5, 217–224 (1993).
    CAS Google Scholar
  41. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).
    Article CAS Google Scholar
  42. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).
    Article CAS Google Scholar
  43. Tanaka, T. et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 353–361 (1995).
    Article CAS Google Scholar
  44. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).
    Article CAS Google Scholar
  45. Palmiter, R.D. et al. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50, 435–443 (1987).
    Article CAS Google Scholar
  46. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).
    Article CAS Google Scholar
  47. MacMahon, A.R. & Bradley, A., The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1037–1058 (1990).
    Google Scholar
  48. Laird, R.W. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids. Res. 19, 4293 (1991).
    Article CAS Google Scholar
  49. Ando, K. et al. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J. exp. Med. 178, 1541–1554 (1993).
    Article CAS Google Scholar
  50. Watanabe, T., Katsura, Y., Yoshitake, A., Masataki, H. & Mori, T. IPAP: Image processor for analytical pathology. J. Toxicol. Pathol. 7, 353–361 (1994).
    Article Google Scholar

Download references