Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver (original) (raw)
References
Ellis, R.E., Yuan, J. & Horvitz, H.R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol.7, 663–698 (1991). ArticleCAS Google Scholar
Raff, M.C. Social controls on cell survival and cell death. Nature356, 397–400 (1992). ArticleCAS Google Scholar
Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell66, 233–243 (1991). ArticleCAS Google Scholar
Oehm, A. et al. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily: sequence identity with the Fas antigen. J. biol. Chem.267, 10709–10715 (1992). CAS Google Scholar
Watanabe-Fukunaga, R. et al. The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J. Immunol.148, 1274–1279 (1992). CASPubMed Google Scholar
Suda, T., Takahashi, T., Golstein, R. & Nagata, S. Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell75, 1169–1178 (1993). ArticleCAS Google Scholar
Yonehara, S., Ishii, A. & Yonehara, M. A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J. exp. Med.169, 1747–1756 (1989). ArticleCAS Google Scholar
Trauth, B.C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science245, 301–305 (1989). ArticleCAS Google Scholar
Suda, T. et al. Expression of the Fas ligand in T-cell-lineage. J. Immunol.154, 3806–3813 (1995). CASPubMed Google Scholar
Vignaux, F. et al. TCR/CD3 coupling to Fas-based cytotoxicity. J. exp. Med.181, 781–786 (1995). ArticleCAS Google Scholar
Kägi, D. et al. Fas and perforin pathway as major mechanisms of T cell-mediated cytotoxicity. Science265, 528–530 (1994). Article Google Scholar
Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J. T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature370, 650–652 (1994). ArticleCAS Google Scholar
Rouvier, E., Luciani, M.-F. & Golstein, R. Fas involvement in Ca2+− independent T cell-mediated cytotoxicity. J. exp. Med.177, 195–200 (1993). ArticleCAS Google Scholar
Alderson, M.R. et al. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. exp. Med.181, 71–77 (1995). ArticleCAS Google Scholar
Ju, S.-T. et al. Fas (CD95)/FasL interaction required for programmed cell death after T-cell activation. Nature373, 444–448 (1995). ArticleCAS Google Scholar
Russell, J.H., Rush, B., Weaver, C. & Wang, R. Mature T cells of autoimmune _Ipr/lpr_mice have a defect in antigen-stimulated suicide. Proc. natn. Acad. Sci. U.S.A.90, 4409–4413 (1993). ArticleCAS Google Scholar
Singer, G.G. & Abbas, A.K., Fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity1, 365–371 (1994). ArticleCAS Google Scholar
Nagata, S. & Suda, T. Fas and Fas ligand: Ipr and gld mutations. Immunol. Today16, 39–43 (1995). ArticleCAS Google Scholar
Nagata, S. & Golstein, P., Fas death factor. Science267, 1449–1456 (1995). ArticleCAS Google Scholar
Adachi, M., Watanabe-Fukunaga, R. & Nagata, S. Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of Ipr mice. Proc. natn. Acad. Sci. U.S.A.90, 1756–1760 (1993). ArticleCAS Google Scholar
Kobayashi, S., Hirano, T., Kakinuma, M. & Uede, T. Transcriptional repression and differential splicing of Fas mRNA by early transposon (ETn) insertion in autoimmune LPR mice. Biochem. biophys. Res. Commun.191, 617–624 (1993). ArticleCAS Google Scholar
Chu, B.J.-L., Drappa, J., Parnassa, A. & Elkon, K.B. The defect in Fas mRNA expression in MRL/Ipr mice is associated with insertion of the retrotransposon, ETn. J. exp. Med.178, 723–730 (1993). ArticleCAS Google Scholar
Wu, J., Zhou, T., He, J. & Mountz, J.D. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J. exp. Med.178, 461–468 (1993). ArticleCAS Google Scholar
Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature356, 314–317 (1992). ArticleCAS Google Scholar
Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell76, 969–976 (1994). ArticleCAS Google Scholar
Mariani, S.M., Matiba, B., Armandola, E.A. & Krammer, R.H., APO-1/Fas (CD95) receptor is expressed in homozygous MRL/lpr mice. Eur. J. Immunol.24, 3119–3123 (1994). ArticleCAS Google Scholar
Cohen, R.L. & Eisenberg, R.A. Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol.9, 243–269 (1991). ArticleCAS Google Scholar
Ni, R. et al. Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp. Cell Res.215, 332–337 (1995). Article Google Scholar
Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature364, 806–809 (1993). ArticleCAS Google Scholar
Itoh, N. & Nagata, S. A novel protein domain required for apoptosis: mutational analysis of human Fas antigen. J. biol. Chem.268, 10932–10937 (1993). CAS Google Scholar
Yagi, T. et al. A novel negative selection for homologous recombinants using diphtheria toxin A fragment gene. Anal. Biochem.214, 77–86 (1993). ArticleCAS Google Scholar
Izui, S. et al. Induction of various autoantibodies by mutant gene Ipr in several strains of mice. J. Immunol.133, 227–233 (1984). CASPubMed Google Scholar
Ogasawara, J., Suda, T. & Nagata, S. Selective apoptosis of CD4+ CD8+ thymocytes by the anti-Fas antibody. J. exp. Med.181, 485–491 (1995). ArticleCAS Google Scholar
Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human Fas ligand in activated lymphocytes. EMBO J.14, 1129–1135 (1995). ArticleCAS Google Scholar
Benedetti, A., Jezequel, A.M. & Orlandi, F. Preferential distribution of apoptotic bodies in acinar zone 3 of normal human and rat liver. J. Hepatol.7, 319–324 (1988). ArticleCAS Google Scholar
Benedetti, A., Jezequel, A.M. & Orlandi, F. A quantitative evaluation of apoptotic bodies in rat liver. Liver8, 172–177 (1988). ArticleCAS Google Scholar
Arber, N., Zajicek, G. & Ariel, I. The streaming liver II. Hepatocyte life history. Liver8, 80–87 (1988). ArticleCAS Google Scholar
Andrew, W., Brown, H.M. & Johnson, J.B. Senile changes in the liver of mouse and man. Am. J. Anat.72, 199–221 (1943). Article Google Scholar
Epstain, C.J. & Andrew, W. Nuclear ploidy in mammalian parenchyma! liver cells. Nature214, 1050–1051 (1967). Article Google Scholar
McWhir, J., Selfridge, J., Harrison, D.J., Squires, S. & Melton, D.W. Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Alaftlre Genet.5, 217–224 (1993). CAS Google Scholar
Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell81, 935–946 (1995). ArticleCAS Google Scholar
Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science268, 1347–1349 (1995). ArticleCAS Google Scholar
Tanaka, T. et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 353–361 (1995). ArticleCAS Google Scholar
Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev.5, 1513–1523 (1991). ArticleCAS Google Scholar
Palmiter, R.D. et al. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell50, 435–443 (1987). ArticleCAS Google Scholar
Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature336, 348–352 (1988). ArticleCAS Google Scholar
MacMahon, A.R. & Bradley, A., The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell62, 1037–1058 (1990). Google Scholar
Laird, R.W. et al. Simplified mammalian DNA isolation procedure. Nucl. Acids. Res.19, 4293 (1991). ArticleCAS Google Scholar
Ando, K. et al. Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. J. exp. Med.178, 1541–1554 (1993). ArticleCAS Google Scholar
Watanabe, T., Katsura, Y., Yoshitake, A., Masataki, H. & Mori, T. IPAP: Image processor for analytical pathology. J. Toxicol. Pathol.7, 353–361 (1994). Article Google Scholar