Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2 (original) (raw)
Gudmundsson, K. The prevalence and occurrence of some rare neurological diseases in Iceland. Acta. Neurol. Scan.45, 114–118 (1969). ArticleCAS Google Scholar
Orr, H.T. et al. Expansion of an unstable trinucleotide GAG repeat in spinocerebellar ataxia type 1. Nature Genet.4, 221–226 (1993). ArticleCAS Google Scholar
Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nature Genet.8, 221–228 (1994). ArticleCAS Google Scholar
Gispert, S. et al. Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA) to chromosome 12q23–24.1. Nature Genet.4, 295–299 (1993). ArticleCAS Google Scholar
Pulst, S.M., Nechiporuk, A. & Starkman, S. Anticipation in spinocerebellar ataxia type 2. Nature Genet.5, 8–10 (1993). ArticleCAS Google Scholar
Flanigan, K. et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): Clinical description and genetic localization to chromosome 16q22.1. Am. J. Hum. Genet.59, 392–399 (1996). CASPubMedPubMed Central Google Scholar
Ranum, L.P.W., Schut, L.J., Lundgren, J.K. & Orr, H.T. Spinocerebellar ataxia type 5 in a family descended from the grandparents of president Lincoln maps to chromosome. Nature Genet.8, 280–284 (1994). ArticleCAS Google Scholar
Gouw, L.G. et al. Retinal degeneration characterizes a spinocerebellar ataxia mapping to chromosome 3p. Nature Genet.10, 89–93 (1995). ArticleCAS Google Scholar
Gispert, S. et al. Localization of the candidate gene D–Amino acid oxidase outside the refined l–cM region of spinocerebellar ataxia 2. Am. J. Hum. Genet.57, 972–975 (1995). CASPubMedPubMed Central Google Scholar
Krauter, K. et al. A second–generation YAC contig map of human chromosome 12. Nature377, 321–323 (1995). CAS Google Scholar
Nechiporuk, A. et al. Genetic mapping of the spinocerebellar ataxia type 2 gene on human chromosome 12. Neurology46, 1731–1735 (1996). ArticleCAS Google Scholar
Durr, A. et al. Dominant cerebellar ataxia type l linked to chromosome 12q (SCA2: spinocerebellar ataxia type 2). Clin. Neurosci.3, 12–16 (1995). CASPubMed Google Scholar
The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell72, 971–983 (1993). Article Google Scholar
La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X–linked spinal and bulbar muscular atrophy. Nature352, 77–79 (1991). ArticleCAS Google Scholar
Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA). Nature Genet.6, 9–13 (1994). ArticleCAS Google Scholar
Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet.6, 14–18 (1994). ArticleCAS Google Scholar
Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature378, 403–406 (1995). ArticleCAS Google Scholar
Loannou, P.A. et al. A new bacteriophage P1–derived vector for the propagation of large human DNA fragments. Nature Genet.6, 84–89 (1994). Article Google Scholar
Nechiporuk, T. et al. Identification of three new microsatellite markers in the spiocerebellar ataxia type 2 (SCA2) region and 1.2 Mb physical map. Hum. Genet.97, 462–467 (1996). ArticleCAS Google Scholar
Gacy, A.M., Goellner, G., Juranic, N., Macura, S. & McMurray, C.T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell81, 533–540 (1995). ArticleCAS Google Scholar
SantaLucia, J., Jr Allawi, H.T. & Seneviratne, P.A. Improved nearest–neighbor parameters for predicting DNA duplex stability. Biochemistry35, 3555–3562 (1996). ArticleCAS Google Scholar
Yamakawa, K. et al. Isolation and characterization of a candidate gene for progressive myoclonus epilepsy on 21q22.3. Hum. Mol. Genet.4, 709–716 (1995). ArticleCAS Google Scholar
Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell68, 799–808 (1992). ArticleCAS Google Scholar
Fu, Y.H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science255, 1256–1258 (1992). ArticleCAS Google Scholar
Nelson, D. The fragile X syndromes. Cell Biol.6, 5–11 (1995). CAS Google Scholar
Goldberg, Y.P. et al. Molecular analysis of new mutations for Huyntington's disease: intermediate alleles and sex of origin effects. Nature Genetics5, 174–179 (1993). ArticleCAS Google Scholar
Myers, R.H. et al. De Novo expansion of a (CAG) repeat in sporadic Huntington's disease. Nature Genet.5, 168–173 (1993). ArticleCAS Google Scholar
Kunst, C.B. & Warren, S.T. Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell77, 853–861 (1994). ArticleCAS Google Scholar
Rubinsztein, D.C. et al. Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36 to 39 repeats. Am. J. Hum. Genet.59, 16–22 (1996). CASPubMedPubMed Central Google Scholar
Filla, A. et al. Has spinocerebellar ataxia type 2 a distinct phenotype? Genetic and clinical study of an Italian family. Neurology45, 793–796 (1995). ArticleCAS Google Scholar
McMurray, C.T. Mechanisms of DNA expansion. Chromosoma104, 2–13 (1995). CASPubMed Google Scholar
Chung, M.Y., Ranum, L., Duvick, L., Servadio, A., Zoghbi, H. & Orr, H.T. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nature Genet.5, 252–258 (1993). Article Google Scholar
Burke, J.R. et al. Huntington and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med.2, 347–350 (1996). ArticleCAS Google Scholar
Ikeda, H. et al. Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo. Nature Genet.13, 196–202 (1996). ArticleCAS Google Scholar
Li, X.–J. et al. A huntingtin–associated protein enriched in brain with implications for pathology. Nature378:, 398–402 (1995). Article Google Scholar
Cohen, D., Chumakov, I. & Weissenbach, J. A first–generation physical map of the human genome. Nature366, 698–701 (1993). ArticleCAS Google Scholar
Larin, Z. & Lehrach, H. Yeast artificial chromosomes: an alternative approach to the molecular analysis of mouse developmental mutations. Genet. Res.56, 203–208 (1990). ArticleCAS Google Scholar
Korenberg, J.R. & Chen, X.N. Human cDNA mapping using a high resolution R–banding technique and fluorescence _In situ_–hybridization. Cytogenet. Cell Genet.69, 196–200 (1995). ArticleCAS Google Scholar
Huynh, D., Nechiporuk, T. & Pulst, S.-M. Alternative transcripts in the mouse neurofibromatosis type 2 (NF2) gene are conserved and code for schwannomins with distinct C–terminal domains. Hum. Mol. Genet.3, 1075–1079 (1994a). ArticleCAS Google Scholar
Ralston, M.L. & Jennrich, R.I. DUD, a derivative free algorithm for non–linear least squares. Technometrics20, 7–14 (1978). Article Google Scholar