Identification and mutation analysis of the complete gene for Chediak–Higashi syndrome (original) (raw)

References

  1. Beguez-Cesar, A.B. Neutropenia cronica maligna familiar congranulaciones atipicas de los leucocitos. Bol. Soc. Cubana Pediatr. 15, 900–922 (1943).
    Google Scholar
  2. Steinbrinck, W. Uber eine neue Granulationsanomalie der Leukocyten. Dtsch. Arch. Klin. Med. 193, 577–581 (1948).
    Google Scholar
  3. Chediak, M. Nouvelle anomalie leukocytaire de caractere constitutionnel et familiel. Rev. Hematol. 7, 362–367 (1952).
    CAS PubMed Google Scholar
  4. Higashi, O. Congenital gigantism of peroxidase granules. Tohoku J. Exp. Med. 59, 315–332 (1954).
    Article CAS Google Scholar
  5. Jones, K.L., Stewart, R.M., Fowler, M., Fukuda, M. & Holcombe, R.F. Chediak-Higashi lymphoblastoid cell lines: granule characteristics and expression of lysosome-associated membrane proteins. Clin. Immunol. Immunopath. 65, 219–226 (1992).
    Article CAS Google Scholar
  6. Burkhardt, J.K., Wiebel, F.A., Hester, S. & Argon, Y. The giant organelles in Beige and Chediak-Higashi fibroblasts are derived from late endosomes and mature lysosomes. J. Exp. Med. 178, 1845–1856 (1993).
    Article CAS Google Scholar
  7. Holcombe, R.F., Jones, K.L. & Stewart, R.M. Lysosomal enzyme activities in Chediak-Higashi syndrome: evaluation of lymphoblastoid cell lines and review of the literature. Immunodeficiency 5, 131–140 (1994).
    CAS Google Scholar
  8. Zhao, H. et al. On the analysis of the pathophysiology of Chediak-Higashi syndrome. Lab. Investig. 71, 25–34 (1994).
    CAS PubMed Google Scholar
  9. Lutzner, M.A., Lowrie, C.T. & Jordan, H.W. Giant granules in leukocytes of the beige mouse. Heredity 58, 299–300 (1966).
    Article Google Scholar
  10. Brandt, E.J., Elliott, R.W. & Swank, R.T. Defective lysosomal enzyme secretion in kidneys of Chediak-Higashi (beige) mice. J. Cell Biol. 67, 774–788 (1975).
    Article CAS Google Scholar
  11. Swank, R.T. & Brandt, E.J. Turnover of kidney β-glucuronidase in normal and Chediak-Higashi (beige) mice. Am. J. Pathol. 92, 755–771 (1978).
    CAS PubMed PubMed Central Google Scholar
  12. Willingham, M.C., Spicer, S.S. & Vincent, R.A., The origin and fate of large dense bodies in beige mouse fibroblasts. Exp. Cell Res. 136, 157–168 (1981).
    Article CAS Google Scholar
  13. Penner, J.D. & Prieur, D.J. A comparative study of the lesions in cultured fibroblasts of humans and four species of animals with Chediak-Higashi syndrome. Am. J. Med. Genet. 28, 445–454 (1987).
    Article CAS Google Scholar
  14. Perou, C.M. et al. Identification of the murine beige gene by YAC complementation and positional cloning. Nature Genet. 13, 303–308 (1996).
    Article CAS Google Scholar
  15. Barbosa, M.D.F.S. et al. Identrtication of the homologous beige and Chediak-Higashi syndrome genes. Nature 382, 262–265 (1996).
    Article CAS Google Scholar
  16. Stein, L., Kruglyak, L., Slonim, D. & Lander, E. Unpublished software, Whitehead Institute/MIT Center for Genome Research (1995).
  17. Fukai, K. et al. Homozygosity mapping of the gene for Chediak-Higashi syndrome to chromosome 1q42–q44 in a segment of conserved synteny that includes the mouse beige locus (bg). Am. J. Hum. Genet., 59, 620–624 (1996).
    CAS PubMed PubMed Central Google Scholar
  18. Barret, F.J. et al. Genetic and physical mapping of the Chediak-Higashi syndrome on chromosome 1q42–43. Am. J. Hum. Genet. 59, 625–632 (1996).
    Google Scholar
  19. Bork, P. & Koonin, E.V. Protein sequence motifs. Curr. Opin. Struct. Biol. 6, 366–376 (1996).
    Article CAS Google Scholar
  20. Peifer, M., Berg, S. & Reynolds, A.B. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789–791 (1994).
    Article CAS Google Scholar
  21. Andrade, M.A. & Bork, P. HEAT repeats in the Huntington's disease protein. Nature Genet. 11, 115–116 (1995).
    Article CAS Google Scholar
  22. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).
    Article CAS Google Scholar
  23. Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).
    Article CAS Google Scholar
  24. Zheng, X.F., Florentine, D., Chen, J., Crabtree, G.R. & Schreiber, S.L. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82, 121–130 (1995).
    Article CAS Google Scholar
  25. Hemmings, B.A. et al. α-and β-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. Biochemistry 29, 3166–3173 (1990).
    Article CAS Google Scholar
  26. Neer, E.J., Schmidt, C.J., Nambudripad, R. & Smith, T.F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).
    Article CAS Google Scholar
  27. Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. & Sigler, P.B. Crystal structure of a GA protein beta gamma dimer at 2.1A resolution. Nature 379, 369–374 (1996).
    Article CAS Google Scholar
  28. Wall, M.A. et al. The structure of the G protein heterotrimer Gi α1β1γ2. 83, 1047–1058 (1995).
  29. Belmont, L.D. & Mitchison, T.J. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631 (1996).
    Article CAS Google Scholar
  30. Lupas, A.N. et al. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).
    Article CAS Google Scholar
  31. Klionsky, D.J. & Emr, S.D. A new class of lysosomal/vacuolar protein sorting signals. J. Biol. Chem. 265, 5349–5352 (1990).
    CAS PubMed Google Scholar
  32. Herman, P.K., Stack, J.H. & Emr, S.D. A genetic and structural analysis of the yeast Vps15 protein kinase: evidence for a direct role of VPS15p in vacuolar protein delivery. EMBO J. 10, 4049–60 (1991).
    Article CAS Google Scholar
  33. Stack, J.H., Herman, P.K., Schu, P.V. & Emr, S.D. A membrane-associated complex containing the Vps15 protein kinase and the VPS34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 12, 2195–204 (1993).
    Article CAS Google Scholar
  34. Novak, E.K., Hui, S.W. & Swank, R.T. Platelet storage pool deficiency in mouse pigment mutations associated with seven distinct genetic loci. Blood 63, 536–544 (1984).
    CAS Google Scholar
  35. Altschul, S.F., Boguski, M.S., Gish, W. & Wootton, J.C. Issues in searching molecular sequence databases. Nature Genet. 6, 119–129 (1994).
    Article CAS Google Scholar
  36. Wootton, J.C. & Federhen, S. Analysis of compositionally biased regions in sequence databases. Meth. Enz. 266, 554–571 (1996).
    Article CAS Google Scholar
  37. Rost, B., Sander, C. & Schneider, R. PHD—an automatic mail server for protein secondary structure prediction. Comput. Appl. Biosci. 10, 53–60 (1994).
    CAS PubMed Google Scholar
  38. Bork, P. & Gibson, T. Applying motif and profile searches. Meth. Enz. 266, 162–184 (1996).
    Article CAS Google Scholar

Download references