Conversion of biliary system to pancreatic tissue in Hes1-deficient mice (original) (raw)
Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R. & Nakanishi, S. Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev.6, 2620–2634 (1992). ArticleCAS Google Scholar
Ishibashi, M. et al. Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev.9, 3136–3148 (1995). ArticleCAS Google Scholar
Sommer, L., Ma, Q. & Anderson, D.J. Neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell Neurosci.8, 221–241 (1996). ArticleCAS Google Scholar
Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature377, 355–358 (1995). ArticleCAS Google Scholar
Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet.24, 36–44 (2000). ArticleCAS Google Scholar
Skipper, M. & Lewis, J. Getting to the guts of enteroendocrine differentiation. Nat. Genet.24, 3–4 (2000). ArticleCAS Google Scholar
Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation. Nature400, 877–881 (1999). ArticleCAS Google Scholar
Edlund, H. Pancreatic organogenesis—developmental mechanisms and implications for therapy. Nat. Rev. Genet.3, 524–532 (2002). ArticleCAS Google Scholar
Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat. Genet.16, 243–251 (1997). ArticleCAS Google Scholar
Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat. Genet.16, 235–242 (1997). ArticleCAS Google Scholar
Alagille, D., Odievre, M., Gautier, M. & Dommergues, J.P. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J. Pediatr.86, 63–71 (1975). ArticleCAS Google Scholar
Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA97, 1607–1611 (2000). ArticleCAS Google Scholar
Schwitzgebel, V.M. et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development127, 3533–3542 (2000). CASPubMed Google Scholar
Ohtsuka, T. et al. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J.18, 2196–2207 (1999). ArticleCAS Google Scholar
Shiojiri, N. & Katayama, H. Development of Dolichos biflorus agglutinin (DBA) binding sites in the bile duct of the embryonic mouse liver. Anat. Embryol. (Berl.)178, 15–20 (1988). ArticleCAS Google Scholar
Pang, K., Mukonoweshuro, C. & Wong, G.G. Beta cells arise from glucose transporter type 2 (Glut2)-expressing epithelial cells of the developing rat pancreas. Proc. Natl. Acad. Sci. USA91, 9559–9563 (1994). ArticleCAS Google Scholar
Herrera, P.L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development127, 2317–2322 (2000). CASPubMed Google Scholar
Ahlgren, U., Pfaff, S.L., Jessell, T.M., Edlund, T. & Edlund, H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature385, 257–260 (1997). ArticleCAS Google Scholar
Elliott, W.M. & Youson, J.H. Development of the adult endocrine pancreas during metamorphosis in the sea lamprey, Petromyzon marinus L. II. Electron microscopy and immunocytochemistry. Anat. Rec.237, 271–290 (1993). ArticleCAS Google Scholar
Kawaguchi, Y. et al. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat. Genet.32, 128–134 (2002). ArticleCAS Google Scholar
Golosow, N. & Grobstein, C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev. Biol.4, 242–255 (1962). ArticleCAS Google Scholar
Kim, S.K. & Hebrok, M. Intercellular signals regulating pancreas development and function. Genes Dev.15, 111–127 (2001). ArticleCAS Google Scholar
Zaret, K.S. Hepatocyte differentiation: from the endoderm and beyond. Curr. Opin. Genet. Dev.11, 568–574 (2001). ArticleCAS Google Scholar
Ohlsson, H., Karlsson, K. & Edlund, T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J.12, 4251–4259 (1993). ArticleCAS Google Scholar
Ahlgren, U., Jonsson, J. & Edlund, H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development122, 1409–1416 (1996). CASPubMed Google Scholar
Lee, J.C. et al. Regulation of the pancreatic pro-endocrine gene Neurogenin3. Diabetes50, 928–936 (2001). ArticleCAS Google Scholar
Kaneta, M. et al. A role for Pref-1 and HES-1 in thymocyte development. J. Immunol.164, 256–264 (2000). ArticleCAS Google Scholar
Tomita, K., Moriyoshi, K., Nakanishi, S., Guillemot, F. & Kageyama, R. Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J.19, 5460–5472 (2000). ArticleCAS Google Scholar