Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase (original) (raw)

References

  1. Chan, P.H. Oxygen radicals in focal cerebral ischemia. Brain Pathol. 4, 59–65 (1994).
    Article CAS Google Scholar
  2. Kinouchi, H. et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. natn. Acad. Sci. U.S.A. 88, 11158–11162 (1991).
    Article CAS Google Scholar
  3. Euler, D.E. Role of oxygen–derived free radicals in canine reperfusion arrhythmia. Am. J. Physiol. 268, H295–H300 (1995).
    CAS PubMed Google Scholar
  4. Samaja, M., Motterlini, R., Santoro, F., Dell' Antonio, G. & Corno, A. Oxidative injury in reoxygenated and reperfused hearts. Free Rad. Biol. Med. 16, 255–262 (1994).
    Article CAS Google Scholar
  5. Jenner, P. Oxidative damage in neurodegenerative disease. Lancet 344, 796–798 (1994).
    Article CAS Google Scholar
  6. Fahn, S. & Cohen, G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann. Neurol. 32, 804–812 (1992).
    Article CAS Google Scholar
  7. Lafon-Cazal, M., Pietri, S., Culcasi, M. & Bockaert, J. NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537 (1993).
    Article CAS Google Scholar
  8. Davis, J.M., Rosenfeld, W.N., Sanders, R.J. & Gonenne, A. Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury. J. appl. Physiol. 74, 2234–2241 (1993).
    Article CAS Google Scholar
  9. Halliwell, B. The role of oxygen radicals in human disease, with particular reference to the vascular system. Homeostasis Suppl 1, 118–126 (1993).
    Google Scholar
  10. Orr, W.C. & Sohal, R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).
    Article CAS Google Scholar
  11. Ku, H.H., Brunk, U.T. & Sohal, R.S. Relationship between mrtochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Rad. Biol. Med. 15, 621–627 (1993).
    Article CAS Google Scholar
  12. Harris, C.A. et al. Manganese superoxide dismutase is induced by IFN-γ in multiple cell types. Synergistic induction by IFN-γ and tumor necrosis factor or IL-1. J. Immunol. 147, 149–154 (1991).
    CAS PubMed Google Scholar
  13. Sato, M., Sasaki, M. & Hojo, H. Antioxidative roles of metallothionein and manganese superoxide dismutase induced by tumor necrosis factor-alpha and interleukin-6. Arch. Bioch. Biophy. 316, 738–744 (1995).
    Article CAS Google Scholar
  14. Akashi, M. et al. Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J. biol. Chem. 270, 15864–15869 (1995).
    Article CAS Google Scholar
  15. Church, S.L. et al. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. natn. Acad. Sci. U.S.A. 90, 3113–3117 (1993).
    Article CAS Google Scholar
  16. St. Clair, D.K., Oberley, T.D., Muse, K.E. & St. Clair, W.H. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Rad. Biol. Med. 16, 275–282 (1994).
    Article CAS Google Scholar
  17. Bourgeron, T. et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature Genet. 11, 144–149 (1995).
    Article CAS Google Scholar
  18. MüIIer–Höcker, J. et al. Fatal infantile mitochondrial cardiomyopathy and myopathy with heterogeneous tissue expression of combined respiratory chain deficiencies. Virchows Archiv. A Pathol. Anat. Histopathol. 419, 355–362 (1991).
    Article Google Scholar
  19. Zheng, X. et al. Evidence in a lethal infantile mitochondrial disease for a nuclear mutation affecting respiratory complexes I and IV. Neurology 39, 1203–1209 (1989).
    Article CAS Google Scholar
  20. Reichmann, H. & Angelini, C. Single muscle fibre analyses in 2 brothers with succinate dehydrogenase deficiency. Eur. Neurol. 34, 95–98 (1994).
    Article CAS Google Scholar
  21. Linderholm, H., Essen-Gustavsson, B. & Thornell, L.E. Low succinate dehydrogenase (SDH) activity in a patient with a hereditary myopathy with paroxysmal myoglobinuria. J. int. Med. 228, 43–52 (1990).
    Article CAS Google Scholar
  22. Hall, R.E., Henriksson, K.G., Lewis, S.F., Haller, R.G. & Kennaway, N.G. Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron–sulfur proteins. J. clin. Invest. 92, 2660–2666 (1993).
    Article CAS Google Scholar
  23. Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L. & Davies, K.J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. biol. Chem. 265, 16330–16336 (1990).
    CAS PubMed Google Scholar
  24. Gardner, P.R., Nguyen, D.D. & White, C.W. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. natn. Acad. Sci. U.S.A. 91, 12248–12252 (1994).
    Article CAS Google Scholar
  25. Gardner, P.R., Raineri, I., Epstein, L.B. & White, C.W. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. biol. Chem. 270, 13399–13405 (1995).
    Article CAS Google Scholar
  26. Chen, Y., Saari, J.T. & Kang, Y.J. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Rad. Biol. Med. 17, 529–536 (1994).
    Article CAS Google Scholar
  27. Chen, S. & Evans, G.A. Use of polymerase chain reaction for screening transgenic mice. in PCR Protocols Current Methods and Applications, Methods in Molecular Biology Vol. 15 (ed White, B.A.) 75–80 (Humana Press, Totowa, New Jersey 1993).
    Google Scholar
  28. de Rosa, G., Duncan, D.S., Keen, C.L. & Hurley, L.S. Evaluation of negative staining technique for determination of CN—insensitive superoxide dismutase activity. Bioch. biophy. Acta 566, 32–39 (1979).
    CAS Google Scholar
  29. Fridovich, I. Measuring the activity of superoxide dismutase: an embarrassment of riches. In Superoxide Dismutase 1 (ed. Oberley, C.W.) 69–77 (CRC Press, Boca Raton 1982).
    Google Scholar
  30. Rifai, Z., Welle, S., Kamp, C. & Thornton, C.A. Ragged red fibers in normal aging and inflammatory myopathy. Ann. Neurol. 37, 24–29 (1995).
    Article CAS Google Scholar
  31. Borgstahl, G.E. et al. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4–helix bundles. Cell 71, 107–118 (1992).
    Article CAS Google Scholar

Download references