Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase (original) (raw)
References
Chan, P.H. Oxygen radicals in focal cerebral ischemia. Brain Pathol.4, 59–65 (1994). ArticleCAS Google Scholar
Kinouchi, H. et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. natn. Acad. Sci. U.S.A.88, 11158–11162 (1991). ArticleCAS Google Scholar
Euler, D.E. Role of oxygen–derived free radicals in canine reperfusion arrhythmia. Am. J. Physiol.268, H295–H300 (1995). CASPubMed Google Scholar
Samaja, M., Motterlini, R., Santoro, F., Dell' Antonio, G. & Corno, A. Oxidative injury in reoxygenated and reperfused hearts. Free Rad. Biol. Med.16, 255–262 (1994). ArticleCAS Google Scholar
Jenner, P. Oxidative damage in neurodegenerative disease. Lancet344, 796–798 (1994). ArticleCAS Google Scholar
Fahn, S. & Cohen, G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann. Neurol.32, 804–812 (1992). ArticleCAS Google Scholar
Lafon-Cazal, M., Pietri, S., Culcasi, M. & Bockaert, J. NMDA-dependent superoxide production and neurotoxicity. Nature364, 535–537 (1993). ArticleCAS Google Scholar
Davis, J.M., Rosenfeld, W.N., Sanders, R.J. & Gonenne, A. Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury. J. appl. Physiol.74, 2234–2241 (1993). ArticleCAS Google Scholar
Halliwell, B. The role of oxygen radicals in human disease, with particular reference to the vascular system. HomeostasisSuppl 1, 118–126 (1993). Google Scholar
Orr, W.C. & Sohal, R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science263, 1128–1130 (1994). ArticleCAS Google Scholar
Ku, H.H., Brunk, U.T. & Sohal, R.S. Relationship between mrtochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Rad. Biol. Med.15, 621–627 (1993). ArticleCAS Google Scholar
Harris, C.A. et al. Manganese superoxide dismutase is induced by IFN-γ in multiple cell types. Synergistic induction by IFN-γ and tumor necrosis factor or IL-1. J. Immunol.147, 149–154 (1991). CASPubMed Google Scholar
Sato, M., Sasaki, M. & Hojo, H. Antioxidative roles of metallothionein and manganese superoxide dismutase induced by tumor necrosis factor-alpha and interleukin-6. Arch. Bioch. Biophy.316, 738–744 (1995). ArticleCAS Google Scholar
Akashi, M. et al. Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. Possible mechanisms for its accumulation. J. biol. Chem.270, 15864–15869 (1995). ArticleCAS Google Scholar
Church, S.L. et al. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. natn. Acad. Sci. U.S.A.90, 3113–3117 (1993). ArticleCAS Google Scholar
St. Clair, D.K., Oberley, T.D., Muse, K.E. & St. Clair, W.H. Expression of manganese superoxide dismutase promotes cellular differentiation. Free Rad. Biol. Med.16, 275–282 (1994). ArticleCAS Google Scholar
Bourgeron, T. et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nature Genet.11, 144–149 (1995). ArticleCAS Google Scholar
MüIIer–Höcker, J. et al. Fatal infantile mitochondrial cardiomyopathy and myopathy with heterogeneous tissue expression of combined respiratory chain deficiencies. Virchows Archiv. A Pathol. Anat. Histopathol.419, 355–362 (1991). Article Google Scholar
Zheng, X. et al. Evidence in a lethal infantile mitochondrial disease for a nuclear mutation affecting respiratory complexes I and IV. Neurology39, 1203–1209 (1989). ArticleCAS Google Scholar
Reichmann, H. & Angelini, C. Single muscle fibre analyses in 2 brothers with succinate dehydrogenase deficiency. Eur. Neurol.34, 95–98 (1994). ArticleCAS Google Scholar
Linderholm, H., Essen-Gustavsson, B. & Thornell, L.E. Low succinate dehydrogenase (SDH) activity in a patient with a hereditary myopathy with paroxysmal myoglobinuria. J. int. Med.228, 43–52 (1990). ArticleCAS Google Scholar
Hall, R.E., Henriksson, K.G., Lewis, S.F., Haller, R.G. & Kennaway, N.G. Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron–sulfur proteins. J. clin. Invest.92, 2660–2666 (1993). ArticleCAS Google Scholar
Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L. & Davies, K.J. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. biol. Chem.265, 16330–16336 (1990). CASPubMed Google Scholar
Gardner, P.R., Nguyen, D.D. & White, C.W. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. natn. Acad. Sci. U.S.A.91, 12248–12252 (1994). ArticleCAS Google Scholar
Gardner, P.R., Raineri, I., Epstein, L.B. & White, C.W. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. biol. Chem.270, 13399–13405 (1995). ArticleCAS Google Scholar
Chen, Y., Saari, J.T. & Kang, Y.J. Weak antioxidant defenses make the heart a target for damage in copper-deficient rats. Free Rad. Biol. Med.17, 529–536 (1994). ArticleCAS Google Scholar
Chen, S. & Evans, G.A. Use of polymerase chain reaction for screening transgenic mice. in PCR Protocols Current Methods and Applications, Methods in Molecular Biology Vol. 15 (ed White, B.A.) 75–80 (Humana Press, Totowa, New Jersey 1993). Google Scholar
de Rosa, G., Duncan, D.S., Keen, C.L. & Hurley, L.S. Evaluation of negative staining technique for determination of CN—insensitive superoxide dismutase activity. Bioch. biophy. Acta566, 32–39 (1979). CAS Google Scholar
Fridovich, I. Measuring the activity of superoxide dismutase: an embarrassment of riches. In Superoxide Dismutase1 (ed. Oberley, C.W.) 69–77 (CRC Press, Boca Raton 1982). Google Scholar
Rifai, Z., Welle, S., Kamp, C. & Thornton, C.A. Ragged red fibers in normal aging and inflammatory myopathy. Ann. Neurol.37, 24–29 (1995). ArticleCAS Google Scholar
Borgstahl, G.E. et al. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4–helix bundles. Cell71, 107–118 (1992). ArticleCAS Google Scholar