A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas (original) (raw)

References

  1. Cattanach, B.M. & Kirk, M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315, 496–498 (1985).
    Article CAS Google Scholar
  2. Leighton, P.A., Ingram, R.S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S.M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).
    Article CAS Google Scholar
  3. Nicholls, R.D. & Knepper, J.L. Genome organisation, function and imprinting in Prader-Willi and Angelman syndromes. Ann. Rev. Genomics Hum. Genet. 2, 153–175 (2001).
    Article CAS Google Scholar
  4. Zwart, R., Sleutels, F., Wutz, A., Schinkel, A.H. & Barlow, D.P. Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev. 15, 2361–2366 (2001).
    Article CAS Google Scholar
  5. Fitzpatrick, G.V., Soloway, P.D. & Higgins, M.J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–431 (2002).
    Article CAS Google Scholar
  6. Lin, S.-P. et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the _Dlk1_-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35, 97–102 (2003).
    Article CAS Google Scholar
  7. Liu, J., Yu, S., Litman, D., Chen, W. & Weinstein, L.S. Identification of a methylation imprint mark within the mouse Gnas locus. Mol. Cell. Biol. 20, 5808–5817 (2000).
    Article CAS Google Scholar
  8. Coombes, C. et al. Epigenetic properties and identification of an imprint mark in the _Nesp_-Gnasxl domain of the mouse Gnas imprinted locus. Mol. Cell. Biol. 23, 5475–5488 (2003).
    Article CAS Google Scholar
  9. Peters, J. et al. A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2. Proc. Natl. Acad. Sci. USA 96, 3830–3835 (1999).
    Article CAS Google Scholar
  10. Yu, S. et al. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein α-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene. Proc. Natl. Acad. Sci. USA 95, 8715–8720 (1998).
    Article CAS Google Scholar
  11. Cattanach, B.M., Peters, J., Ball, S. & Rasberry, C. Two imprinted gene mutations: three phenotypes. Hum. Mol. Genet. 9, 2263–2273 (2000).
    Article CAS Google Scholar
  12. Skinner, J.A., Cattanach, B.M. & Peters, J. The imprinted oedematous-small mutation on mouse chromosome 2 identifies new roles for Gnas and Gnasxl in development. Genomics 80, 373–375 (2002).
    Article CAS Google Scholar
  13. Wroe, S.F. et al. An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus. Proc. Natl. Acad. Sci. USA 97, 3342–3346 (2000).
    Article CAS Google Scholar
  14. Li, T. et al. Tissue-specific expression of antisense and sense transcripts at the imprinted Gnas locus. Genomics 69, 295–304 (2000).
    Article CAS Google Scholar
  15. Chan, S.D.H. et al. Cloning and characterisation of the mouse Gsα promoter: activation by retinoic acid in F9 teratocarcinoma cells. Endocrine J. 2, 311–316 (1994).
    CAS Google Scholar
  16. Weinstein, L.S., Yu, S., Warner, D.R. & Liu, J. Endocrine manifestations of stimulatory G protein α-subunit mutations and the role of genomic imprinting. Endocrine Rev. 22, 675–705 (2001).
    CAS Google Scholar
  17. Liu, J. et al. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J. Clin. Invest. 106, 1167–1174 (2000).
    Article CAS Google Scholar
  18. Bastepe, M., Lane, A.H. & Juppner, H. Paternal uniparental isodisomy of chromosome 20q - and the resulting changes in GNAS1 methylation - as a plausible cause of pseudohypoparathyroidism. Am. J. Hum. Genet. 68, 1283–1289 (2001).
    Article CAS Google Scholar
  19. Bastepe, M. et al. Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J. Clin. Invest. 112, 1255–1263 (2003).
    Article CAS Google Scholar
  20. Spahn, L. & Barlow, D.P. An ICE pattern crystallizes. Nat. Genet. 35, 11–12 (2003).
    Article CAS Google Scholar
  21. Ischia, R. et al. Molecular cloning and characterisation of NESP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. J. Biol. Chem. 17, 11657–11662 (1997).
    Article Google Scholar
  22. Kehlenbach, R.H., Matthey, J. & Huttner, W.B. XL alpha s is a new type of G protein. Nature 372, 804–808 (1994).
    Article CAS Google Scholar
  23. Hayward, B.E. et al. The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. Proc. Natl. Acad. Sci. USA 95, 10038–10043 (1998).
    Article CAS Google Scholar
  24. Hayward, B.E., Moran, V., Strain, L. & Bonthron, D.T. Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc. Natl. Acad. Sci. USA 95, 15475–15480 (1998).
    Article CAS Google Scholar
  25. Hayward, B.E. & Bonthron, D.T. An imprinted antisense transcript at the human GNAS1 locus. Hum. Mol. Genet. 9, 835–841 (2000).
    Article CAS Google Scholar
  26. Storck, T., Krüth, U., Kolhekar, R., Sprengel, R. & Seeburg, P.H. Rapid construction in yeast of complex targeting vectors for gene manipulation in the mouse. Nucleic Acids Res. 24, 4594–4596 (1996).
    Article CAS Google Scholar
  27. Bunting, M., Bernstein, K.E., Greer, J.M., Capecchi, M.R. & Thomas, K.R. Targeting genes for self-excision in the germline. Genes Dev. 13, 1524–1528 (1999).
    Article CAS Google Scholar
  28. Ramirez-Solis, R., Davis, A.C. & Bradley, A. Gene targeting in embryonic stem cells. Methods Enzymol. 225, 855–878 (1993).
    Article CAS Google Scholar
  29. Hough, T. et al. Novel phenotypes identified by plasma biochemical screen in the mouse. Mamm. Genome 13, 595–602 (2002).
    Article CAS Google Scholar

Download references