Antagonism between DNA hypermethylation and enhancer-blocking activity at the H19 DMD is uncovered by CpG mutations (original) (raw)
References
Verona, R.I., Mann, M.R.W. & Bartolomei, M.S. Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu. Rev. Cell. Dev. Biol.19, 237–258 (2003). ArticleCAS Google Scholar
Thorvaldsen, J.L., Mann, M.R., Nwoko, O., Duran, K.L. & Bartolomei, M.S. Analysis of sequence upstream of the endogenous H19 gene reveals elements both essential and dispensable for imprinting. Mol. Cell. Biol.22, 2450–2462 (2002). ArticleCAS Google Scholar
Lopes, S. et al. Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum. Mol. Genet.12, 295–305 (2003). ArticleCAS Google Scholar
Eden, S. et al. An upstream repressor element plays a role in Igf2 imprinting. EMBO J.20, 3518–3525 (2001). ArticleCAS Google Scholar
Ainscough, J.F.-X., Dandolo, L. & Surani, M.A. Appropriate expression of the mouse H19 gene utilises three or more distinct enhancer regions spread over more than 130 kb. Mech. Dev.91, 365–368 (2000). ArticleCAS Google Scholar
Leighton, P.A., Saam, J.R., Ingram, R.S., Stewart, C.L. & Tilghman, S.M. An enhancer deletion affects both H19 and Igf2 expression. Genes Dev.9, 2079–2089 (1995). ArticleCAS Google Scholar
Thorvaldsen, J.L., Duran, K.L. & Bartolomei, M.S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev.12, 3693–3702 (1998). ArticleCAS Google Scholar
DeChiara, T.M., Efstratiadis, A. & Robertson, E.J. A growth-deficiency phenotype in heterozygous mice carrying an insulin- like growth factor II gene disrupted by targeting. Nature345, 78–80 (1990). ArticleCAS Google Scholar
Tremblay, K.D., Duran, K.L. & Bartolomei, M.S. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol.17, 4322–4329 (1997). ArticleCAS Google Scholar
Davis, T.L., Trasler, J.M., Moss, S.B., Yang, G.J. & Bartolomei, M.S. Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics58, 18–28 (1999). ArticleCAS Google Scholar
Bartolomei, M.S., Webber, A.L., Brunkow, M.E. & Tilghman, S.M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev.7, 1663–1673 (1993). ArticleCAS Google Scholar
Ferguson-Smith, A.S., Sasaki, H., Cattanach, B.M. & Surani, M.A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature362, 751–754 (1993). ArticleCAS Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 (1993). ArticleCAS Google Scholar
Stadnick, M.P. et al. Role of a 461 bp G-rich repetitive element in H19 transgene imprinting. Dev. Genes Evol.209, 239–248 (1999). ArticleCAS Google Scholar
Hark, A.T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature405, 486–489 (2000). ArticleCAS Google Scholar
Bell, A.C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature405, 482–485 (2000). ArticleCAS Google Scholar
Frevel, M.A.E., Hornberg, J.J. & Reeve, A.E. A potential imprint control element: identification of a conserved 42 bp sequence upstream of H19. Trends Genet.15, 216–218 (1999). ArticleCAS Google Scholar
Bell, A.C., West, A.G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell98, 387–396 (1999). ArticleCAS Google Scholar
Srivastava, M. et al. H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. Genes Dev.14, 1186–1195 (2000). CASPubMedPubMed Central Google Scholar
Mann, M.R. et al. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod.69, 902–914 (2003). ArticleCAS Google Scholar
Kanduri, C. et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation sensitive. Curr. Biol.10, 853–856 (2000). ArticleCAS Google Scholar
Schoenherr, C.J., Levorse, J.M. & Tilghman, S.M. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet.33, 66–69 (2003). ArticleCAS Google Scholar
Pant, V. et al. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev.17, 586–590 (2003). ArticleCAS Google Scholar
Neumann, B., Kubicka, P. & Barlow, D.P. Characteristics of imprinted genes. Nat. Genet.9, 12–13 (1995). ArticleCAS Google Scholar
Yoon, B.J. et al. Regulation of DNA methylation of Rasgrf1. Nat. Genet.30, 92–96 (2002). ArticleCAS Google Scholar
Fedoriw, A.M., Stein, P., Svoboda, P., Schultz, R.M. & Bartolomei, M.S. Transgenic RNAi reveals essential function for CTCF in H19 gene imprinting. Science303, 238–240 (2004). ArticleCAS Google Scholar
Lewandoski, M., Wassarman, K.M. & Martin, G.R. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr. Biol.7, 148–151 (1997). ArticleCAS Google Scholar
Auffray, C. & Rougeon, F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem.107, 303–314 (1980). ArticleCAS Google Scholar
Chung, J.H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell74, 505–514 (1993). ArticleCAS Google Scholar
Chung, J.H., Bell, A.C. & Felsenfeld, G. Characterization of the chicken beta-globin insulator. Proc. Natl. Acad. Sci. USA94, 575–580 (1997). ArticleCAS Google Scholar