Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity (original) (raw)
McDade, J.E. et al. Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med.297, 1197–1203 (1977). ArticleCAS Google Scholar
Fields, B.S. The social life of Legionellae. in Legionella (eds. Marre R. et al.) 135–142 (ASM, Washington DC, 2002). Google Scholar
Steinert, M., Hentschel, U. & Hacker, J. Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol. Rev.26, 149–162 (2002). ArticleCAS Google Scholar
Fields, B.S., Benson, R.F. & Besser, R.E. Legionella and Legionnaires' disease: 25 years of investigation. Clin. Microbiol. Rev.15, 506–526 (2002). Article Google Scholar
Atlas, R.M. Legionella: from environmental habitats to disease pathology, detection and control. Environ. Microbiol.1, 283–293 (1999). ArticleCAS Google Scholar
Molofsky, A.B. & Swanson, M.S. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbiol.53, 29–40 (2004). ArticleCAS Google Scholar
Yu, V.L. et al. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J. Infect. Dis.186, 127–128 (2002). Article Google Scholar
Aurell, H. et al. Legionella pneumophila serogroup 1 strain Paris: endemic distribution throughout France. J. Clin. Microbiol.41, 3320–3322 (2003). Article Google Scholar
Goebl, M. & Yanagida, M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem. Sci.16, 173–177 (1991). ArticleCAS Google Scholar
Cirillo, S.L.G., Lum, J. & Cirillo, J.D. Identification of a novel loci involved in entry by Legionella pneumophila. Microbiology146, 1345–1359 (2000). ArticleCAS Google Scholar
Conover, G.M., Derre, I., Vogel, J.P. & Isberg, R.R. The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol. Microbiol.48, 305–321 (2003). ArticleCAS Google Scholar
Nagai, H., Kagan, J.C., Zhu, X., Kahn, R.A. & Roy, C.R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science295, 679–682 (2002). ArticleCAS Google Scholar
Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393, 537–544 (1998). ArticleCAS Google Scholar
Walburger, A. et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science304, 1800–1804 (2004). ArticleCAS Google Scholar
Barz, C., Abahji, T.N., Trulzsch, K. & Heesemann, J. The Yersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and Rac-1. FEBS Lett.482, 139–143 (2000). ArticleCAS Google Scholar
Seshadri, R. et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. USA100, 5455–5460 (2003). ArticleCAS Google Scholar
Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol.2, E69 (2004). Article Google Scholar
Hryniewicz-Jankowska, A., Czogalla, A., Bok, E. & Sikorsk, A.F. Ankyrins, multifunctional proteins involved in many cellular pathways. Folia Histochem. Cytobiol.40, 239–249 (2002). CASPubMed Google Scholar
Caturegli, P. et al. ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect. Immun.68, 5277–5283 (2000). ArticleCAS Google Scholar
Jenuwein, T., Laible, G., Dorn, R. & Reuter, G. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell. Mol. Life Sci.54, 80–93 (1998). ArticleCAS Google Scholar
Kipreos, E.T. & Pagano, M. The F-box protein family. Genome Biol.1 REVIEWS3002 (2000).
Craig, K.L. & Tyers, M. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Mol. Biol.72, 299–328 (1999). ArticleCAS Google Scholar
Schrammeijer, B. et al. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol.11, 258–262 (2001). ArticleCAS Google Scholar
Reiss, U. et al. Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis. J. Biol. Chem.279, 1281–1290 (2004). ArticleCAS Google Scholar
Li, G., Foote, C., Alexander, S. & Alexander, H. Sphingosine-1-phosphate lyase has a central role in the development of Dictyostelium discoideum. Development128, 3473–3483 (2001). CASPubMed Google Scholar
Biederbick, A., Rose, S. & Elsasser, H.P. A human intracellular apyrase-like protein, LALP70, localizes to lysosomal/autophagic vacuoles. J. Cell. Sci.112, 2473–2484 (1999). CASPubMed Google Scholar
Luo, Z.Q. & Isberg, R.R. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl. Acad. Sci. USA101, 841–846 (2004). ArticleCAS Google Scholar
Vergunst, A.C. et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science290, 979–982 (2000). ArticleCAS Google Scholar
Morozova, I. et al. Comparative sequence analysis of the icm/dot genes in Legionella. Plasmid51, 127–147 (2004). ArticleCAS Google Scholar
Desvaux, M., Parham, N.J. & Henderson, I.R. The autotransporter secretion system. Res. Microbiol.155, 53–60 (2004). ArticleCAS Google Scholar
Benz, I. & Schmidt, M.A. AIDA-I, the adhesin involved in diffuse adherence of the diarrhoeagenic Escherichia coli strain 2787 (O126:H27), is synthesized via a precursor molecule. Mol. Microbiol.6, 1539–1546 (1992). ArticleCAS Google Scholar
Klemm, P., Hjerrild, L., Gjermansen, M. & Schembri, M.A. Structure-function analysis of the self-recognizing antigen 43 autotransporter protein from Escherichia coli. Mol. Microbiol.51, 283–296 (2004). ArticleCAS Google Scholar
Smith, R.S., Wolfgang, M.C. & Lory, S. An adenylate cyclase-controlled signaling network regulates Pseudomonas aeruginosa virulence in a mouse model of acute pneumonia. Infect. Immun.72, 1677–1684 (2004). ArticleCAS Google Scholar
Deng, W. et al. Comparative genomics of Salmonella enterica serovar typhi strain. J. Bacteriol.185, 2330–2337 (2003). ArticleCAS Google Scholar
Rankin, S., Li, Z. & Isberg, R.R. Macrophage-induced genes of Legionella pneumophila: protection from reactive intermediates and solute imbalance during intracellular growth. Infect. Immun.70, 3637–3648 (2002). ArticleCAS Google Scholar
Brassinga, A.K. et al. A 65-kilobase pathogenicity island is unique to Philadelphia-1 strains of Legionella pneumophila. J. Bacteriol.185, 4630–4637 (2003). ArticleCAS Google Scholar
Segal, G., Russo, J.J. & Shuman, H.A. Relationships between a new type IV secretion system and the icm/dot virulence system of Legionella pneumophila. Mol. Microbiol.34, 799–809 (1999). ArticleCAS Google Scholar
Luneberg, E. et al. Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila. Mol. Microbiol.39, 1259–1271 (2001). ArticleCAS Google Scholar
Doyle, R.M. & Heuzenroeder, M.W. A mutation in an _ompR_-like gene on a Legionella longbeachae serogroup 1 plasmid attenuates virulence. Int. J. Med. Microbiol.292, 227–239 (2002). ArticleCAS Google Scholar
Molofsky, A.B. & Swanson, M.S. Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol. Microbiol.50, 445–461 (2003). ArticleCAS Google Scholar
Bezanson, G., Fernandez, R., Haldane, D., Burbridge, S. & Marrie, T. Virulence of patient and water isolates of Legionella pneumophila in guinea pigs and mouse L929 cells varies with bacterial genotype. Can. J. Microbiol.40, 426–431 (1994). ArticleCAS Google Scholar
Brown, A., Vickers, R.M., Elder, E.M., Lema, M. & Garrity, G.M. Plasmid and surface antigen markers of endemic and epidemic Legionella pneumophila strains. J. Clin. Microbiol.16, 230–235 (1982). CASPubMedPubMed Central Google Scholar
Cirillo, S.L., Bermudez, L.E., El-Etr, S.H., Duhamel, G.E. & Cirillo, J.D. Legionella pneumophila entry gene rtxA is involved in virulence. Infect. Immun.69, 508–517 (2001). ArticleCAS Google Scholar
Cirillo, S.L., Yan, L., Littman, M., Samrakandi, M.M. & Cirillo, J.D. Role of the Legionella pneumophila rtxA gene in amoebae. Microbiology148, 1667–1677 (2002). ArticleCAS Google Scholar
Stone, B.J. & Kwaik, Y.A. Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J. Bacteriol.181, 1395–1402 (1999). CASPubMedPubMed Central Google Scholar
Vogel, J.P., Andrews, H.L., Wong, S.K. & Isberg, R.R. Conjugative transfer by the virulence system of Legionella pneumophila. Science279, 873–876 (1998). ArticleCAS Google Scholar
Miyamoto, H., Yoshida, S., Taniguchi, H. & Shuman, H.A. Virulence conversion of Legionella pneumophila by conjugal transfer of chromosomal DNA. J. Bacteriol.185, 6712–6718 (2003). ArticleCAS Google Scholar
Glaser, P. et al. Comparative genomics of Listeria species. Science294, 849–852 (2001). CASPubMed Google Scholar
Buchrieser, C. et al. The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect. Immun.67, 4851–4861 (1999). CASPubMedPubMed Central Google Scholar
Frangeul, L. et al. CAAT-box, contigs-assembly and annotation tool-box for genome sequencing projects. BioInformatics20, 790–797 (2004). ArticleCAS Google Scholar