Dysregulation of the TSC-mTOR pathway in human disease (original) (raw)
Heitman, J., Movva, N.R. & Hall, M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science253, 905–909 (1991). CASPubMed Google Scholar
Brown, E.J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature369, 756–758 (1994). CASPubMed Google Scholar
Chiu, M.I., Katz, H. & Berlin, V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc. Natl. Acad. Sci. USA91, 12574–12578 (1994). CASPubMedPubMed Central Google Scholar
Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell78, 35–43 (1994). CASPubMed Google Scholar
Harris, T.E. & Lawrence, J.C. Jr. TOR signaling. Sci STKE2003, re15 (2003). PubMed Google Scholar
Jacinto, E. & Hall, M.N. Tor signalling in bugs, brain and brawn. Nat. Rev. Mol. Cell Biol.4, 117–126 (2003). CASPubMed Google Scholar
Sarbassov dos, D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14, 1296–1302 (2004). Google Scholar
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell110, 177–189 (2002). CASPubMed Google Scholar
Kim, D.H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell110, 163–175 (2002). CASPubMed Google Scholar
Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell10, 457–468 (2002). CASPubMed Google Scholar
Avruch, J., Belham, C., Weng, Q., Hara, K. & Yonezawa, K. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. Prog. Mol. Subcell. Biol.26, 115–154 (2001). CASPubMed Google Scholar
Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem.267, 6321–6330 (2000). CASPubMed Google Scholar
Gingras, A.C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem.68, 913–963 (1999). CASPubMed Google Scholar
Mamane, Y. et al. eIF4E--from translation to transformation. Oncogene23, 3172–3179 (2004). CASPubMed Google Scholar
Fingar, D.C. et al. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol.24, 200–216 (2004). CASPubMedPubMed Central Google Scholar
Potter, C.J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell105, 357–368 (2001). CASPubMed Google Scholar
Tapon, N., Ito, N., Dickson, B.J., Treisman, J.E. & Hariharan, I.K. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell105, 345–355 (2001). CASPubMed Google Scholar
Gao, X. & Pan, D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev.15, 1383–1392 (2001). CASPubMedPubMed Central Google Scholar
Stocker, H. et al. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol.5, 559–565 (2003). CASPubMed Google Scholar
Saucedo, L.J. et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol.5, 566–571 (2003). CASPubMed Google Scholar
Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. & Cantley, L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell10, 151–162 (2002). CASPubMed Google Scholar
Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol.4, 648–657 (2002). CASPubMed Google Scholar
Potter, C.J., Pedraza, L.G. & Xu, T. Akt regulates growth by directly phosphorylating Tsc2. Nat. Cell Biol.4, 658–665 (2002). CASPubMed Google Scholar
Zhang, Y. et al. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol.5, 578–581 (2003). CASPubMed Google Scholar
Garami, A. et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol. Cell11, 1457–1466 (2003). CASPubMed Google Scholar
Inoki, K., Li, Y., Xu, T. & Guan, K.L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev.17, 1829–1834 (2003). CASPubMedPubMed Central Google Scholar
Goncharova, E.A. et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. J. Biol. Chem.277, 30958–30967 (2002). CASPubMed Google Scholar
Kwiatkowski, D.J. et al. A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum. Mol. Genet.11, 525–534 (2002). CASPubMed Google Scholar
Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl. Acad. Sci. USA98, 10320–10325 (2001). CASPubMedPubMed Central Google Scholar
Gao, X. et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol.4, 699–704 (2002). CASPubMed Google Scholar
Dennis, P.B. et al. Mammalian TOR: a homeostatic ATP sensor. Science294, 1102–1105 (2001). CASPubMed Google Scholar
Hardie, D.G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem.67, 821–855 (1998). CASPubMed Google Scholar
Inoki, K., Zhu, T. & Guan, K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell115, 577–590 (2003). CASPubMed Google Scholar
Hawley, S.A. et al. Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol.2, 28 (2003). PubMedPubMed Central Google Scholar
Hong, S.P., Leiper, F.C., Woods, A., Carling, D. & Carlson, M. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl. Acad. Sci. USA100, 8839–8843 (2003). CASPubMedPubMed Central Google Scholar
Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol.13, 2004–2008 (2003). CASPubMed Google Scholar
Corradetti, M.N., Inoki, K., Bardeesy, N., DePinho, R.A. & Guan, K.L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev.18, 1533–1538 (2004). CASPubMedPubMed Central Google Scholar
Shaw, R.J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell6, 91–99 (2004). CASPubMed Google Scholar
Shaw, R.J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA101, 3329–3335 (2004). CASPubMedPubMed Central Google Scholar
Klionsky, D.J. & Ohsumi, Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol.15, 1–32 (1999). CASPubMed Google Scholar
Gozuacik, D. & Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene23, 2891–2906 (2004). CASPubMed Google Scholar
Kamada, Y., Sekito, T. & Ohsumi, Y. Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr. Top. Microbiol. Immunol.279, 73–84 (2004). CASPubMed Google Scholar
Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet.36, 585–595 (2004). CASPubMed Google Scholar
van der Hoeve, J. Eye symptoms in tuberous sclerosis of the brain. Trans. Ophthalmol. Soc. UK20, 329–334 (1920). Google Scholar
Tucker, M., Goldstein, A., Dean, M. & Knudson, A. National Cancer Institute Workshop Report: the phakomatoses revisited. J. Natl. Cancer Inst.92, 530–533 (2000). CASPubMed Google Scholar
van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science277, 805–808 (1997). CASPubMed Google Scholar
The European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell75, 1305–1315 (1993).
Niida, Y. et al. Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am. J. Hum. Genet.69, 493–503 (2001). CASPubMedPubMed Central Google Scholar
Tucker, T. & Friedman, J.M. Pathogenesis of hereditary tumors: beyond the “two-hit” hypothesis. Clin. Genet.62, 345–357 (2002). CASPubMed Google Scholar
El-Hashemite, N., Zhang, H., Henske, E.P. & Kwiatkowski, D.J. Mutation in TSC2 and activation of mammalian target of rapamycin signalling pathway in renal angiomyolipoma. Lancet361, 1348–1349 (2003). CASPubMed Google Scholar
Kwiatkowski, D.J. Tuberous sclerosis: from tubers to mTOR. Ann. Hum. Genet.67, 87–96 (2003). CASPubMed Google Scholar
Sawyers, C.L. Will mTOR inhibitors make it as cancer drugs? Cancer Cell4, 343–348 (2003). CASPubMed Google Scholar
Kenerson, H.L., Aicher, L.D., True, L.D. & Yeung, R.S. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res.62, 5645–5650 (2002). CASPubMed Google Scholar
Zhou, X.P. et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am. J. Hum. Genet.73, 404–411 (2003). CASPubMedPubMed Central Google Scholar
Neshat, M.S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA98, 10314–10319 (2001). CASPubMedPubMed Central Google Scholar
Majumder, P.K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med.10, 594–601 (2004). CASPubMed Google Scholar
Devroede, G., Lemieux, B., Masse, S., Lamarche, J. & Herman, P.S. Colonic hamartomas in tuberous sclerosis. Gastroenterology94, 182–188 (1988). CASPubMed Google Scholar
Gomez, M.R., Sampson, J. & Whittemore, V.H. Tuberous Sclerosis Complex 340 (Oxford University Press, Oxford, 1999). Google Scholar
Hernan, I. et al. De novo germline mutation in the serine-threonine kinase STK11/LKB1 gene associated with Peutz-Jeghers syndrome. Clin. Genet.66, 58–62 (2004). CASPubMed Google Scholar
Entius, M.M. et al. Molecular genetic alterations in hamartomatous polyps and carcinomas of patients with Peutz-Jeghers syndrome. J. Clin. Pathol.54, 126–131 (2001). CASPubMedPubMed Central Google Scholar
Bardeesy, N. et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature419, 162–167 (2002). CASPubMed Google Scholar
Miyoshi, H. et al. Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res.62, 2261–2266 (2002). CASPubMed Google Scholar
Kandt, R.S. Tuberous sclerosis complex and neurofibromatosis type 1: the two most common neurocutaneous diseases. Neurol. Clin.21, 983–1004 (2003). PubMed Google Scholar
Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell104, 593–604 (2001). CASPubMed Google Scholar
Furuta, S., Hidaka, E., Ogata, A., Yokota, S. & Kamata, T. Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene23, 3898–3904 (2004). CASPubMed Google Scholar
Shao, J., Evers, B.M. & Sheng, H. Roles of phosphatidylinositol 3′-kinase and mammalian target of rapamycin/p70 ribosomal protein S6 kinase in K-Ras-mediated transformation of intestinal epithelial cells. Cancer Res.64, 229–235 (2004). CASPubMed Google Scholar
Kaelin, W.G. Jr. The von Hippel-Lindau gene, kidney cancer, and oxygen sensing. J. Am. Soc. Nephrol.14, 2703–2711 (2003). PubMed Google Scholar
El-Hashemite, N., Walker, V., Zhang, H. & Kwiatkowski, D.J. Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res.63, 5173–5177 (2003). CASPubMed Google Scholar
Brugarolas, J.B., Vazquez, F., Reddy, A., Sellers, W.R. & Kaelin, W.G., Jr. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell4, 147–158 (2003). CASPubMed Google Scholar
Su, L.K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science256, 668–670 (1992). CASPubMed Google Scholar
Fearnhead, N.S., Britton, M.P. & Bodmer, W.F. The ABC of APC. Hum. Mol. Genet.10, 721–733 (2001). CASPubMed Google Scholar
Gera, J.F. et al. AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J. Biol. Chem.279, 2737–2746 (2004). CASPubMed Google Scholar
Mak, B.C., Takemaru, K., Kenerson, H.L., Moon, R.T. & Yeung, R.S. The tuberin-hamartin complex negatively regulates Beta -catenin signaling activity. J. Biol. Chem.278, 5947–5951 (2003). CASPubMed Google Scholar
Howe, J.R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science280, 1086–1088 (1998). CASPubMed Google Scholar
Zhou, X.P. et al. Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am. J. Hum. Genet.69, 704–711 (2001). CASPubMedPubMed Central Google Scholar
Eng, C. Constipation, polyps, or cancer? Let PTEN predict your future. Am. J. Med. Genet.122A, 315–322 (2003). PubMed Google Scholar
Birchenall-Roberts, M.C. et al. Tuberous sclerosis complex 2 gene product interacts with human SMAD proteins. A molecular link of two tumor suppressor pathways. J. Biol. Chem.279, 25605–25613 (2004). CASPubMed Google Scholar
Rajan, P., Panchision, D.M., Newell, L.F. & McKay, R.D. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells. J. Cell Biol.161, 911–921 (2003). CASPubMedPubMed Central Google Scholar
He, X.C. et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat. Genet.36, 1117–1121 (2004). CASPubMed Google Scholar
Kirschner, L.S. et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat. Genet.26, 89–92 (2000). CASPubMed Google Scholar
Stratakis, C.A. Genetics of Peutz-Jeghers syndrome, Carney complex and other familial lentiginoses. Horm. Res.54, 334–343 (2000). CASPubMed Google Scholar
Nickerson, M.L. et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell2, 157–164 (2002). CASPubMed Google Scholar
Hancock, E. & Osborne, J. Lymphangioleiomyomatosis: a review of the literature. Respir. Med.96, 1–6 (2002). CASPubMed Google Scholar
Pavlovich, C.P. & Schmidt, L.S. Searching for the hereditary causes of renal-cell carcinoma. Nat. Rev. Cancer4, 381–393 (2004). CASPubMed Google Scholar
Okimoto, K. et al. A germ-line insertion in the Birt-Hogg-Dube (BHD) gene gives rise to the Nihon rat model of inherited renal cancer. Proc. Natl. Acad. Sci. USA101, 2023–2027 (2004). CASPubMedPubMed Central Google Scholar
Harrington, L.S. et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol.166, 213–223 (2004). CASPubMedPubMed Central Google Scholar
Shah, O.J., Wang, Z. & Hunter, T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr. Biol.14, 1650–1656 (2004). CASPubMed Google Scholar
Um, S.H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature431, 200–205 (2004). CASPubMed Google Scholar
Zhang, H. et al. Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J. Clin. Invest.112, 1223–1233 (2003). CASPubMedPubMed Central Google Scholar
Shioi, T. et al. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation107, 1664–1670 (2003). CASPubMed Google Scholar
Blair, E. et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet.10, 1215–1220 (2001). CASPubMed Google Scholar
Gollob, M.H. et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N. Engl. J. Med.344, 1823–1831 (2001). CASPubMed Google Scholar
Daniel, T. & Carling, D. Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome. J. Biol. Chem.277, 51017–51024 (2002). CASPubMed Google Scholar
Chan, A.Y., Soltys, C.L., Young, M.E., Proud, C.G. & Dyck, J.R. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem.279, 32771–32779 (2004). CASPubMed Google Scholar
Abraham, R.T. & Wiederrecht, G.J. Immunopharmacology of rapamycin. Annu. Rev. Immunol.14, 483–510 (1996). CASPubMed Google Scholar
Garza, L., Aude, Y.W. & Saucedo, J.F. Can we prevent in-stent restenosis? Curr. Opin. Cardiol.17, 518–525 (2002). PubMed Google Scholar
Huang, S. & Houghton, P.J. Targeting mTOR signaling for cancer therapy. Curr. Opin. Pharmacol.3, 371–377 (2003). CASPubMed Google Scholar
Bjornsti, M.A. & Houghton, P.J. The TOR pathway: a target for cancer therapy. Nat. Rev. Cancer4, 335–348 (2004). CASPubMed Google Scholar