An adaptive radiation model for the origin of new gene functions (original) (raw)
Ohno, S. Evolution by Gene Duplication (Springer, Heidelberg, Germany, 1970). Book Google Scholar
Force, A. et al. Preservation of duplicate genes by complementary degenerative mutations. Genetics151, 1531–1545 (1999). CASPubMed CentralPubMed Google Scholar
Hendrickson, H., Slechta, E.S., Bergthorsson, U., Andersson, D.I. & Roth, J.R. Amplification–mutagenesis: Evidence that 'directed' adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc. Natl. Acad. Sci.99, 2164–2169 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kondrashov, F.A., Rogozin, I.B., Wolf, Y.I. & Koonin, E.V. Selection in the evolution of gene duplications. Genome Biol.3, RESEARCH0008 (2002). ArticlePubMedPubMed Central Google Scholar
Hooper, S.D. & Berg, O.G. On the nature of gene innovation: duplication patterns in microbial genomes. Mol. Biol. Evol.20, 945–954 (2003). ArticleCASPubMed Google Scholar
Roth, J.R. & Andersson, D.I. Adaptive mutation: how growth under selection stimulates Lac(+) reversion by increasing target copy number. J. Bacteriol.186, 4855–4860 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cairns, J. & Foster, P.L. Adaptive radiation of a frameshift mutation in Escherichia coli. Genetics128, 695–701 (1991). CASPubMed CentralPubMed Google Scholar
Romero, D. & Palacios, R. Gene amplification and genomic plasticity in prokaryotes. Annu. Rev. Genet.31, 91–111 (1997). ArticleCASPubMed Google Scholar
Riehle, M.M., Bennett, A.F. & Long, A.D. Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl. Acad. Sci. USA98, 525–530 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zhong, S., Khodursky, A., Dykhuizen, D.E. & Dean, A.M. Evolutionary genomics of ecological specialization. Proc. Natl. Acad. Sci. USA101, 11719–11724 (2004). ArticleCASPubMedPubMed Central Google Scholar
Reams, A.B. & Neidle, E.L. Genome plasticity in Acinetobacter: new degradative capabilities acquired by the spontaneous amplification of large chromosomal segments. Mol. Microbiol.47, 1291–1304 (2003). ArticleCASPubMed Google Scholar
Dunham, M.J. et al. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA99, 16144–16149 (2002). ArticleCASPubMedPubMed Central Google Scholar
Guillemaud, T. et al. Quantitative variation and selection of esterase gene amplification in Culex pipiens. Heredity83, 87–99 (1999). ArticleCASPubMed Google Scholar
Kim, S.J. & Lee, G.M. Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol. Bioeng.64, 741–749 (1999). ArticleCASPubMed Google Scholar
Roth, J.R. & Andersson, D.I. Amplification-mutagenesis--how growth under selection contributes to the origin of genetic diversity and explains the phenomenon of adaptive mutation. Res. Microbiol.155, 342–351 (2004). ArticleCASPubMed Google Scholar
Hall, B.G. The EBG system of E. coli: origin and evolution of a novel beta-galactosidase for the metabolism of lactose. Genetica118, 143–156 (2003). ArticleCASPubMed Google Scholar
Aharoni, A. et al. The 'evolvability' of promiscuous protein functions. Nat. Genet.37, 73–76 (2005). ArticleCASPubMed Google Scholar
Gevers, D., Vandepoele, K., Simillion, C. & Van de Peer, Y. Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol.12, 148–154 (2004). ArticleCASPubMed Google Scholar
Hooper, S.D. & Berg, O.G. Duplication is more common among laterally transferred genes than among indigenous genes. Genome Biol.4, R48 (2003). Article Google Scholar
Lespinet, O., Wolf, Y.I., Koonin, E.V. & Aravind, L. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res.12, 1048–1059 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jordan, I.K., Makarova, K.S., Spouge, J.L., Wolf, Y.I. & Koonin, E.V. Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res.11, 555–565 (2001). ArticleCASPubMedPubMed Central Google Scholar
Fortna, A. et al. Lineage-Specific Gene Duplication and Loss in Human and Great Ape Evolution. PLOS Biol.2, 0937–0954 (2004). ArticleCAS Google Scholar
Trask, B.J. et al. Large multi-chromosomal duplications encompass many members of the olfactory receptor gene family in the human genome. Hum. Mol. Genet.7, 2007–2020 (1998). ArticleCASPubMed Google Scholar
Mefford, H.C. et al. Comparative sequencing of a multicopy subtelomeric region containing olfactory receptor genes reveals multiple interactions between non-homologous chromosomes. Hum. Mol. Genet.10, 2363–2372 (2001). ArticleCASPubMed Google Scholar
Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science305, 525–528 (2004). ArticleCASPubMed Google Scholar
Huynen, M.A. & van Nimwegen, E. The frequency distribution of gene family sizes in complete genomes. Mol. Biol. Evol.15, 583–589 (1998). ArticleCASPubMed Google Scholar
Harrison, P.M. & Gerstein, M. Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J. Mol. Biol.318, 1155–1174 (2002). ArticleCASPubMed Google Scholar
Qian, J., Luscombe, N.M. & Gerstein, M. Protein family and fold occurrence in genomes: power-law behaviour and evolutionary model. J. Mol. Biol.313, 673–681 (2001). ArticleCASPubMed Google Scholar
Karev, G.P., Wolf, Y.I. & Koonin, E.V. Simple stochastic birth and death models of genome evolution: was there enough time for us to evolve? Bioinformatics19, 1889–1900 (2003). ArticleCASPubMed Google Scholar
Karev, G.P., Wolf, Y.I., Rzhetsky, A.Y., Berezovskaya, F.S. & Koonin, E.V. Birth and death of protein domains: A simple model of evolution explains power law behavior. BMC Evol. Biol.2, 18 (2002). ArticlePubMedPubMed Central Google Scholar
Lynch, M. & Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science290, 1151–1155 (2000). ArticleCASPubMed Google Scholar
Hughes, A.L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B Biol. Sci.256, 119–124 (1994). ArticleCAS Google Scholar
Wagner, A. Selection and gene duplication: a view from the genome. Genome Biol.3, 1012.1–1012.3 (2002). Article Google Scholar
Hughes, A.L. Evolutionary diversification of the mammalian defensins. Cell Mol. Life Sci.56, 94–103 (1999). ArticleCASPubMed Google Scholar
Gilad, Y., Bustamante, C.D., Lancet, D. & Paabo, S. Natural selection on the olfactory receptor gene family in humans and chimpanzees. Am. J. Hum. Genet.73, 489–501 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gilad, Y. et al. Dichotomy of single-nucleotide polymorphism haplotypes in olfactory receptor genes and pseudogenes. Nat. Genet.26, 221–224 (2000). ArticleCASPubMed Google Scholar
Johnson, M.E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature413, 514–519 (2001). ArticleCASPubMed Google Scholar
Zhang, J., Rosenberg, H.F. & Nei, M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Natl. Acad. Sci. USA95, 3708–3713 (1998). ArticleCASPubMedPubMed Central Google Scholar
Holloway, A.K. & Begun, D.J. Molecular evolution and population genetics of duplicated accessory gland protein genes in Drosophila. Mol. Biol. Evol.21, 1625–1628 (2004). ArticleCASPubMed Google Scholar
Liu, Y., Harrison, P.M., Kunin, V. & Gerstein, M. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol.5, R64 (2004). ArticlePubMedPubMed Central Google Scholar
Mira, A., Ochman, H. & Moran, N.A. Deletional bias and the evolution of bacterial genomes. Trends Genet.17, 589–596 (2001). ArticleCASPubMed Google Scholar
Young, J.M. & Trask, B.J. The sense of smell: genomics of vertebrate odorant receptors. Hum. Mol. Genet.11, 1153–1160 (2002). ArticleCASPubMed Google Scholar
Gilad, Y. & Lancet, D. Population differences in the human functional olfactory repertoire. Mol. Biol. Evol.20, 307–314 (2003). ArticleCASPubMed Google Scholar
Clark, A.G. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science302, 1960–1963 (2003). ArticleCASPubMed Google Scholar
Schluter, D. The Ecology of Adaptive Radiation (Oxford University Press, Oxford, UK, 2000). Google Scholar
Simpson, G. Tempo and Mode in Evolution (Columbia University Press, New York, 1944). Google Scholar
Eldredge, N. & Gould, S.J. Punctuated equilibria: an alternative to phyletic gradualism. in Models in Paleobiology (ed. Schopf, T.) 82–115 (Freeman, Cooper & Co., San Francisco, California, 1972). Google Scholar
Stanley, S. Macroevolution: Pattern and Process (W. H. Freeman, San Francisco, California, 1979). Google Scholar
Simpson, G. The Major Features of Evolution (Columbia University Press, New York, 1953). Google Scholar
Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evolution30, 314–334 (1976). ArticlePubMed Google Scholar
Gingerich, P.D. Rates of evolution: effects of time and temporal scaling. Science222, 159–161 (1983). ArticleCASPubMed Google Scholar
Lynch, M. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat.136, 727–741 (1990). Article Google Scholar
Turelli, M., Gillespie, J.H. & Lande, R. Rate tests for selection on quantitative characters during macroevolution and microevolution. Evolution42, 1085–1089 (1988). ArticlePubMed Google Scholar
Chan, K.M. & Moore, B.R. Whole-tree methods for detecting differential diversification rates. Syst. Biol.51, 855–865 (2002). ArticlePubMed Google Scholar
Wagner, P.J. Contrasting the underlying patterns of active trends in morphologic evolution. Evolution50, 990–1007 (1996). ArticlePubMed Google Scholar
Jablonski, D. Body size and macroevolution. in Evolutionary Paleobiology (eds. Jablonski, D., Erwin, D.H. & Lipps, J.H.) 256–289 (University of Chicago Press, Chicago, Illinois, 1996). Google Scholar