- Bosl, M.R., Takaku, K., Oshima, M., Nishimura, S. & Taketo, M.M. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc. Natl. Acad. Sci. USA 94, 5531–5534 (1997).
Article CAS Google Scholar
- Kryukov, G.V. et al. Characterization of mammalian selenoproteomes. Science 300, 1439–1443 (2003).
Article CAS Google Scholar
- Schomburg, L., Schweizer, U. & Kohrle, J. Selenium and selenoproteins in mammals: extraordinary, essential, enigmatic. Cell. Mol. Life Sci. 61, 1988–1995 (2004).
Article CAS Google Scholar
- Moustafa, M.E. et al. Models for assessing the role of selenoproteins in health. J. Nutr. 133, 2494S–2496S (2003).
Article CAS Google Scholar
- Schweizer, U., Schomburg, L. & Savaskan, N.E. The neurobiology of selenium: lessons from transgenic mice. J. Nutr. 134, 707–710 (2004).
Article CAS Google Scholar
- Kumaraswamy, E. et al. Selective removal of the selenocysteine tRNA [Ser]Sec gene (Trsp) in mouse mammary epithelium. Mol. Cell. Biol. 23, 1477–1488 (2003).
Article CAS Google Scholar
- Carlson, B.A. et al. Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J. Biol. Chem. 279, 8011–8017 (2004).
Article CAS Google Scholar
- Carlson, B.A., Xu, X.M., Gladyshev, V.N. & Hatfield, D.L. Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J. Biol. Chem. 280, 5542–5548 (2005).
Article CAS Google Scholar
- Weiss Sachdev, S. & Sunde, R.A. Selenium regulation of transcript abundance and translational efficiency of glutathione peroxidase-1 and -4 in rat liver. Biochem. J. 357, 851–858 (2001).
CAS PubMed PubMed Central Google Scholar
- Hatfield, D.L. & Gladyshev, V.N. How selenium has altered our understanding of the genetic code. Mol. Cell. Biol. 22, 3565–3576 (2002).
Article CAS Google Scholar
- Driscoll, D.M. & Copeland, P.R. Mechanism and regulation of selenoprotein synthesis. Annu. Rev. Nutr. 23, 17–40 (2003).
Article CAS Google Scholar
- Bianco, A.C., Salvatore, D., Gereben, B., Berry, M.J. & Larsen, P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev. 23, 38–89 (2002).
Article CAS Google Scholar
- Schussler, G.C. The thyroxine-binding proteins. Thyroid 10, 141–149 (2000).
Article CAS Google Scholar
- Dumitrescu, A.M., Liao, X.H., Best, T.B., Brockmann, K. & Refetoff, S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet. 74, 168–175 (2004).
Article CAS Google Scholar
- Friesema, E.C. et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet 364, 1435–1437 (2004).
Article CAS Google Scholar
- Dumitrescu, A. et al. On the mechanism producing the unusual thyroid phenotype in defects of the MCT8 gene. Thyroid 14, 761 (2004).
Google Scholar
- Leonard, J.L. Dibutyryl cAMP induction of type II 5′deiodinase activity in rat brain astrocytes in culture. Biochem. Biophys. Res. Commun. 151, 1164–1172 (1988).
Article CAS Google Scholar
- Botero, D. et al. Ubc6p and ubc7p are required for normal and substrate-induced endoplasmic reticulum-associated degradation of the human selenoprotein type 2 iodothyronine monodeiodinase. Mol. Endocrinol. 16, 1999–2007 (2002).
Article CAS Google Scholar
- Curcio-Morelli, C. et al. Deubiquitination of type 2 iodothyronine deiodinase by von Hippel-Lindau protein-interacting deubiquitinating enzymes regulates thyroid hormone activation. J. Clin. Invest. 112, 189–196 (2003).
Article CAS Google Scholar
- Lescure, A., Allmang, C., Yamada, K., Carbon, P. & Krol, A. cDNA cloning, expression pattern and RNA binding analysis of human selenocysteine insertion sequence (SECIS) binding protein 2. Gene 291, 279–285 (2002).
Article CAS Google Scholar
- Copeland, P.R. Regulation of gene expression by stop codon recoding: selenocysteine. Gene 312, 17–25 (2003).
Article CAS Google Scholar
- Schneider, M.J. et al. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 15, 2137–2148 (2001).
Article CAS Google Scholar
- Olson, G.E., Winfrey, V.P., Nagdas, S.K., Hill, K.E. & Burk, R.F. Selenoprotein P is required for mouse sperm development. Biol. Reprod. 73, 201–211 (2005).
Article CAS Google Scholar
- Chu, F.F. et al. Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 64, 962–968 (2004).
Article CAS Google Scholar
- Schussler, G.C. & Plager, J.E. Effect of preliminary purification of 131-I-thyroxine on the determination of free thyroxine in serum. J. Clin. Endocrinol. Metab. 27, 242–250 (1967).
Article CAS Google Scholar
- Balzano, S. et al. Effect of total sleep deprivation on 5′-deiodinase activity of rat brown adipose tissue. Endocrinology 127, 882–890 (1990).
Article CAS Google Scholar
- Schomburg, L. et al. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J. 370, 397–402 (2003).
Article CAS Google Scholar