Adaptive evolution of bacterial metabolic networks by horizontal gene transfer (original) (raw)
References
Schmidt, S., Sunyaev, S., Bork, P. & Dandekar, T. Metabolites: a helping hand for pathway evolution? Trends Biochem. Sci.28, 336–341 (2003). ArticleCASPubMed Google Scholar
Lawrence, J.G. & Hendrickson, H. Lateral gene transfer: when will adolescence end? Mol. Microbiol.50, 739–749 (2003). ArticleCASPubMed Google Scholar
Lerat, E., Daubin, V., Ochman, H. & Moran, N.A. Evolutionary origins of genomic repertoires in bacteria. PLoS Biol.3, e130 (2005). ArticlePubMedPubMed Central Google Scholar
Teichmann, S.A. et al. The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. J. Mol. Biol.311, 693–708 (2001). ArticleCASPubMed Google Scholar
Rison, S.C., Teichmann, S.A. & Thornton, J.M. Homology, pathway distance and chromosomal localization of the small molecule metabolism enzymes in Escherichia coli. J. Mol. Biol.318, 911–932 (2002). ArticleCASPubMed Google Scholar
Alves, R., Chaleil, R.A. & Sternberg, M.J. Evolution of enzymes in metabolism: a network perspective. J. Mol. Biol.320, 751–770 (2002). ArticleCASPubMed Google Scholar
Reed, J.L., Vo, T.D., Schilling, C.H. & Palsson, B.O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol.4, R54 (2003). ArticlePubMedPubMed Central Google Scholar
Lawrence, J.G., Hartl, D.L. & Ochman, H. Molecular considerations in the evolution of bacterial genes. J. Mol. Evol.33, 241–250 (1991). ArticleCASPubMed Google Scholar
Ochman, H. & Groisman, E.A. The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium. EXS69, 479–493 (1994). CASPubMed Google Scholar
Snel, B., Bork, P. & Huynen, M.A. Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res.12, 17–25 (2002). ArticleCASPubMed Google Scholar
Mirkin, B.G., Fenner, T.I., Galperin, M.Y. & Koonin, E.V. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol.3, 2 (2003). ArticlePubMedPubMed Central Google Scholar
Boussau, B., Karlberg, E.O., Frank, A.C., Legault, B.A. & Andersson, S.G. Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA101, 9722–9727 (2004). ArticleCASPubMedPubMed Central Google Scholar
Keseler, I.M. et al. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res.33, D334–D337 (2005). ArticleCASPubMed Google Scholar
Papp, B., Pál, C. & Hurst, L.D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature429, 661–664 (2004). ArticleCASPubMed Google Scholar
Hooper, S.D. & Berg, O.G. On the nature of gene innovation: duplication patterns in microbial genomes. Mol. Biol. Evol.20, 945–954 (2003). ArticleCASPubMed Google Scholar
Gerdes, S.Y. et al. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol.185, 5673–5684 (2003). ArticleCASPubMedPubMed Central Google Scholar
Thatcher, J.W., Shaw, J.M. & Dickinson, W.J. Marginal fitness contributions of nonessential genes in yeast. Proc. Natl. Acad. Sci. USA95, 253–257 (1998). ArticleCASPubMedPubMed Central Google Scholar
Price, N.D., Reed, J.L. & Palsson, B.O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol.2, 886–897 (2004). ArticleCASPubMed Google Scholar
Segre, D., Vitkup, D. & Church, G.M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA99, 15112–15117 (2002). ArticleCASPubMedPubMed Central Google Scholar
Reed, J.L. & Palsson, B.O. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res.14, 1797–1805 (2004). ArticleCASPubMedPubMed Central Google Scholar
Taoka, M. et al. Only a small subset of the horizontally transferred chromosomal genes in Escherichia coli are translated into proteins. Mol. Cell. Proteomics3, 780–787 (2004). ArticleCASPubMed Google Scholar
Burgard, A.P., Nikolaev, E.V., Schilling, C.H. & Maranas, C.D. Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Res.14, 301–312 (2004). ArticleCASPubMedPubMed Central Google Scholar
Salgado, H. et al. RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12. Nucleic Acids Res.32, D303–D306 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jain, R., Rivera, M.C. & Lake, J.A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA96, 3801–3806 (1999). ArticleCASPubMedPubMed Central Google Scholar
Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabasi, A.L. Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature427, 839–843 (2004). ArticleCASPubMed Google Scholar
von Mering, C. et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res.33, D433–D437 (2005). ArticleCASPubMed Google Scholar
Forster, J., Famili, I., Fu, P., Palsson, B.O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res.13, 244–253 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kellis, M., Birren, B.W. & Lander, E.S. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature428, 617–624 (2004). ArticleCASPubMed Google Scholar