A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2 (original) (raw)
References
Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M. & Soppe, W. Genetic control of flowering time in Arabidopsis. Ann. Rev. Plant Physiol. Plant Mol. Biol.49, 345–370 (1998). ArticleCAS Google Scholar
Thomas, B. & Vince-Prue, D. Photoperiodism in Plants (Academic Press, New York, 1997). Google Scholar
Alonso-Blanco, C., El-Assal, S.E-D., Coupland, G. & Koornneef, M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Island ecotypes of Arabidopsis thaliana. Genetics149, 749–764 (1998). CASPubMedPubMed Central Google Scholar
Guo, H., Yang, H., Mockler, T.C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science279, 1360–1363 (1998). ArticleCAS Google Scholar
Karlsson, B.H., Sills, G.R. & Nienhuis, J. Effect of photoperiod and vernalization on the number of leaves at flowering in 32 Arabidopsis thaliana (Brassicaceae) ecotypes. Am. J. Bot.80, 646–648 (1993). Article Google Scholar
Koornneef, M., Hanhart, C.J. & van der Veen, J.H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet.229, 57–66 (1991). ArticleCAS Google Scholar
Jansen, R.C., Van Ooijen, J.W., Stam, P., Lister, C. & Dean, C. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl. Genet.91, 33–37 (1995). ArticleCAS Google Scholar
Neff, M.M., Neff, J.D., Chory, J. & Pepper, E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J.14, 387–392 (1998). ArticleCAS Google Scholar
Lin, C. et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl Acad. Sci. USA95, 2686–2690 (1998). ArticleCAS Google Scholar
Ahmad, M., Jarillo, J.A. & Cashmore, A.R. Chimeric protein between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell10, 197–207 (1998). CASPubMedPubMed Central Google Scholar
Bernier, G., Havelange, A., Houssa, C., Petitjean, A. & Lejeune, P. Physiological signals that induce flowering. Plant Cell5, 1147–1155 (1993). ArticleCAS Google Scholar
Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. & Coen, E. Inflorescence commitment and architecture in Arabidopsis. Science275, 80–83 (1997). ArticleCAS Google Scholar
Mockler, T.C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic action of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development126, 2073–2082 (1999). CASPubMed Google Scholar
Mizoguchi, T. & Coupland, G. ZEITLUPE and FKF1: novel connections between flowering time and circadian clock control. Trends Plant Sci.5, 409–411 (2000). ArticleCAS Google Scholar
Devlin, P.F. & Kay, S.A. Cryptochromes are required for phytochrome signalling to the circadian clock but not for rhythmicity. Plant Cell12, 2499–2509 (2000). ArticleCAS Google Scholar
Swarup, K. et al. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J.20, 67–77 (1999). ArticleCAS Google Scholar
Suarez-Lopez, P. et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature410, 1116–1120 (2001). ArticleCAS Google Scholar
Johanson, U. et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science290, 344–347 (2000). ArticleCAS Google Scholar
Michaels, S.D. & Amasino, R.M. Flowering Locus C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell11, 949–956 (1999). ArticleCAS Google Scholar
Yano, M. et al. Hd1, a major photoperiod senstivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell12, 2473–2483 (2000). ArticleCAS Google Scholar
Takahashi, Y., Shomura, A., Sasaki, T. & Yano, M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc. Natl Acad. Sci. USA98, 7922–7927 (2001). ArticleCAS Google Scholar
Wang, R.L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature398, 236–239 (1999). ArticleCAS Google Scholar
Frary, A. et al. Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science289, 85–88 (2000). ArticleCAS Google Scholar
Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl Acad. Sci. USA97, 4718–4723 (2000). ArticleCAS Google Scholar
Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J. & Mitchell-Olds, T. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell13, 681–693 (2001). ArticleCAS Google Scholar
Maloof, J.N. et al. Natural variation in light sensitivity of Arabidopsis. Nature Genet.29, 441–446 (2001). ArticleCAS Google Scholar
Koornneef, M., Hanhart, C., van Loenen-Martinet, P. & Blankestijn-de Vries, H. The effect of daylength on the transition to flowering in phytochrome-deficient, late-flowering and double mutants of Arabidopsis thaliana. Physiol. Planta95, 260–266 (1995). ArticleCAS Google Scholar
Van Tuinen, A., Kerckhoffs, L.H.J., Nagatani, A., Kendrick, R.E. & Koornneef, M. Far-red light-insensitive, phytochrome A–deficient mutants of tomato. Mol. Gen. Genet.246, 133–141 (1995). ArticleCAS Google Scholar
Peters, J.L., Schreuder, M.E.L., Verduin, S.J.W. & Kendrick, R.E. Physiological characterization of a high-pigment mutant of tomato. Photochem. Photobiol.56, 75–82 (1992). ArticleCAS Google Scholar
Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci.316, 1194–1199 (1993). CAS Google Scholar
Lazo, G.R., Stein, P.A. & Ludwig, R.A. A DNA transformation–competent Arabidopsis genomic library in Agrobacterium. Biotechnology9, 963–967 (1991). ArticleCAS Google Scholar
Chou, I.T. & Gasser, C.S. Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin protein. Plant Mol. Biol.35, 873–892 (1997). ArticleCAS Google Scholar
Guan, K. & Dixon, J.G. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion protein with glutathione S-transferase. Anal. Biochem.192, 262–267 (1991). ArticleCAS Google Scholar
Sessa, G., Yang, C.-X., Raz, V., Eyal, Y. & Fluhr, R. Dark induction and subcellular localization of the pathogenesis related PRB-1b protein. Plant Mol. Biol.28, 537–547 (1995). ArticleCAS Google Scholar
Raz, V. & Ecker, J.R. Regulation of differential growth in the apical hook of Arabidopsis. Development126, 3661–3668 (1999). CASPubMed Google Scholar
Cashmore, A.R., Jarillo, J.A., Wu, Y.J. & Liu, D. Cryptochrome: blue light receptors for plants and animals. Science284, 760–765 (1999). ArticleCAS Google Scholar