A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2 (original) (raw)

References

  1. Koornneef, M., Alonso-Blanco, C., Peeters, A.J.M. & Soppe, W. Genetic control of flowering time in Arabidopsis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 345–370 (1998).
    Article CAS Google Scholar
  2. Thomas, B. & Vince-Prue, D. Photoperiodism in Plants (Academic Press, New York, 1997).
    Google Scholar
  3. Alonso-Blanco, C., El-Assal, S.E-D., Coupland, G. & Koornneef, M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Island ecotypes of Arabidopsis thaliana. Genetics 149, 749–764 (1998).
    CAS PubMed PubMed Central Google Scholar
  4. Guo, H., Yang, H., Mockler, T.C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360–1363 (1998).
    Article CAS Google Scholar
  5. Karlsson, B.H., Sills, G.R. & Nienhuis, J. Effect of photoperiod and vernalization on the number of leaves at flowering in 32 Arabidopsis thaliana (Brassicaceae) ecotypes. Am. J. Bot. 80, 646–648 (1993).
    Article Google Scholar
  6. Koornneef, M., Hanhart, C.J. & van der Veen, J.H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57–66 (1991).
    Article CAS Google Scholar
  7. Jansen, R.C., Van Ooijen, J.W., Stam, P., Lister, C. & Dean, C. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl. Genet. 91, 33–37 (1995).
    Article CAS Google Scholar
  8. Neff, M.M., Neff, J.D., Chory, J. & Pepper, E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).
    Article CAS Google Scholar
  9. Lin, C. et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl Acad. Sci. USA 95, 2686–2690 (1998).
    Article CAS Google Scholar
  10. Ahmad, M., Jarillo, J.A. & Cashmore, A.R. Chimeric protein between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10, 197–207 (1998).
    CAS PubMed PubMed Central Google Scholar
  11. Bernier, G., Havelange, A., Houssa, C., Petitjean, A. & Lejeune, P. Physiological signals that induce flowering. Plant Cell 5, 1147–1155 (1993).
    Article CAS Google Scholar
  12. Bradley, D., Ratcliffe, O., Vincent, C., Carpenter, R. & Coen, E. Inflorescence commitment and architecture in Arabidopsis. Science 275, 80–83 (1997).
    Article CAS Google Scholar
  13. Mockler, T.C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic action of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073–2082 (1999).
    CAS PubMed Google Scholar
  14. Mizoguchi, T. & Coupland, G. ZEITLUPE and FKF1: novel connections between flowering time and circadian clock control. Trends Plant Sci. 5, 409–411 (2000).
    Article CAS Google Scholar
  15. Devlin, P.F. & Kay, S.A. Cryptochromes are required for phytochrome signalling to the circadian clock but not for rhythmicity. Plant Cell 12, 2499–2509 (2000).
    Article CAS Google Scholar
  16. Swarup, K. et al. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 20, 67–77 (1999).
    Article CAS Google Scholar
  17. Suarez-Lopez, P. et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120 (2001).
    Article CAS Google Scholar
  18. Johanson, U. et al. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290, 344–347 (2000).
    Article CAS Google Scholar
  19. Michaels, S.D. & Amasino, R.M. Flowering Locus C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11, 949–956 (1999).
    Article CAS Google Scholar
  20. Yano, M. et al. Hd1, a major photoperiod senstivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2483 (2000).
    Article CAS Google Scholar
  21. Takahashi, Y., Shomura, A., Sasaki, T. & Yano, M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc. Natl Acad. Sci. USA 98, 7922–7927 (2001).
    Article CAS Google Scholar
  22. Wang, R.L., Stec, A., Hey, J., Lukens, L. & Doebley, J. The limits of selection during maize domestication. Nature 398, 236–239 (1999).
    Article CAS Google Scholar
  23. Frary, A. et al. Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88 (2000).
    Article CAS Google Scholar
  24. Fridman, E., Pleban, T. & Zamir, D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl Acad. Sci. USA 97, 4718–4723 (2000).
    Article CAS Google Scholar
  25. Kliebenstein, D.J., Lambrix, V.M., Reichelt, M., Gershenzon, J. & Mitchell-Olds, T. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13, 681–693 (2001).
    Article CAS Google Scholar
  26. Maloof, J.N. et al. Natural variation in light sensitivity of Arabidopsis. Nature Genet. 29, 441–446 (2001).
    Article CAS Google Scholar
  27. Koornneef, M., Hanhart, C., van Loenen-Martinet, P. & Blankestijn-de Vries, H. The effect of daylength on the transition to flowering in phytochrome-deficient, late-flowering and double mutants of Arabidopsis thaliana. Physiol. Planta 95, 260–266 (1995).
    Article CAS Google Scholar
  28. Van Tuinen, A., Kerckhoffs, L.H.J., Nagatani, A., Kendrick, R.E. & Koornneef, M. Far-red light-insensitive, phytochrome A–deficient mutants of tomato. Mol. Gen. Genet. 246, 133–141 (1995).
    Article CAS Google Scholar
  29. Peters, J.L., Schreuder, M.E.L., Verduin, S.J.W. & Kendrick, R.E. Physiological characterization of a high-pigment mutant of tomato. Photochem. Photobiol. 56, 75–82 (1992).
    Article CAS Google Scholar
  30. Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. 316, 1194–1199 (1993).
    CAS Google Scholar
  31. Lazo, G.R., Stein, P.A. & Ludwig, R.A. A DNA transformation–competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9, 963–967 (1991).
    Article CAS Google Scholar
  32. Chou, I.T. & Gasser, C.S. Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin protein. Plant Mol. Biol. 35, 873–892 (1997).
    Article CAS Google Scholar
  33. Guan, K. & Dixon, J.G. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion protein with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).
    Article CAS Google Scholar
  34. Sessa, G., Yang, C.-X., Raz, V., Eyal, Y. & Fluhr, R. Dark induction and subcellular localization of the pathogenesis related PRB-1b protein. Plant Mol. Biol. 28, 537–547 (1995).
    Article CAS Google Scholar
  35. Raz, V. & Ecker, J.R. Regulation of differential growth in the apical hook of Arabidopsis. Development 126, 3661–3668 (1999).
    CAS PubMed Google Scholar
  36. Cashmore, A.R., Jarillo, J.A., Wu, Y.J. & Liu, D. Cryptochrome: blue light receptors for plants and animals. Science 284, 760–765 (1999).
    Article CAS Google Scholar

Download references