Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer (original) (raw)

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Vikhlyaeva, E.M., Khodzhaeva, Z.S. & Fantschenko, N.D. Familial predisposition to uterine leiomyomas. Int. J. Gynaecol. Obstet. 51, 127–131 (1995).
    Article CAS Google Scholar
  2. Luoto, R. et al. Heritability and risk factors of uterine fibroids—the Finnish Twin Cohort study. Maturitas 37, 15–26 (2000).
    Article CAS Google Scholar
  3. Takamizawa, S. et al. Risk of complications and uterine malignancies in women undergoing hysterectomy for presumed benign leiomyomas. Gynecol. Obstet. Invest. 48, 193–196 (1999).
    Article CAS Google Scholar
  4. Alam, N.A. et al. Localization of a gene (MCUL1) for multiple cutaneous leiomyomata and uterine fibroids to chromosome 1q42.3–q43. Am. J. Hum. Genet. 68, 1264–1269 (2001).
    Article CAS Google Scholar
  5. Kiuru, M. et al. Familial cutaneous leiomyomatosis is a two-hit condition associated with renal cell cancer of characteristic histopathology. Am. J. Pathol. 159, 825–829 (2001).
    Article CAS Google Scholar
  6. Launonen, V. et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl Acad. Sci. USA 98, 3387–3392 (2001).
    Article CAS Google Scholar
  7. Gellera, C. et al. Fumarase deficiency is an autosomal recessive encephalopathy affecting both the mitochondrial and the cytosolic enzymes. Neurology 40, 495–499 (1990).
    Article CAS Google Scholar
  8. Liochev, S.I. & Fridovich, I. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc. Natl Acad. Sci. USA 89, 5892–5896 (1992).
    Article CAS Google Scholar
  9. Bourgeron, T. et al. Mutation of the fumarase gene in two siblings with progressive encephalopathy and fumarase deficiency. J. Clin. Invest. 93, 2514–2518 (1994).
    Article CAS Google Scholar
  10. Rustin, P. et al. Inborn errors of the Krebs cycle: a group of unusual mitochondrial diseases in human. Biochim. Biophys. Acta 1361, 185–197 (1997).
    Article CAS Google Scholar
  11. Coughlin, E.M. et al. Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol. Genet. Metab. 63, 254–262 (1998).
    Article CAS Google Scholar
  12. Baysal, B.E. et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287, 848–851 (2000).
    Article CAS Google Scholar
  13. Niemann, S. & Muller, U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26, 268–270 (2000).
    Article CAS Google Scholar
  14. Astuti, D. et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69, 49–54 (2001).
    Article CAS Google Scholar
  15. Hatch, M.D. A simple spectrophotometric assay for fumarate hydratase in crude tissue extracts. Anal. Biochem. 85, 271–275 (1978).
    Article CAS Google Scholar
  16. Weaver, T., Lees, M. & Banaszak, L. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site. Protein Sci. 6, 834–842 (1997).
    Article CAS Google Scholar
  17. Kaelin, W.G. Jr & Maher, E.R. The VHL tumour-suppressor gene paradigm. Trends Genet. 14, 423–426 (1998).
    Article CAS Google Scholar

Download references

Acknowledgements

We are grateful to the families involved and their clinicians (H.M. Nelson, E. Healy, A.C. Pembroke, E. Calonje, S. Jablonska, J.R.S. Rendall, P.J. August, P.S. Friedman, R. Ratnavel, C.S. Munro, P.W. Bowers, R.J. Mann, A. MacDonald, F. Camacho-Martinez, N.P. Burrows, C. Fuller, K. Dalziel, G. Guillet, A.C. Pembroke, J.A.R. Anderson, M.G. Davies, S.E. Hadfield-Jones, S.P. MacDonald- Hull, S.M. Wilkinson, R.H. Felix, J. Leonard and M. Suri). We thank E. Pukkala and the Finnish Cancer Registry for help in characterizing the Finnish families; S. Marttinen, S. Lindh, S. Lindroos, R. Mattlar, K. Laukkanen and A. Leskinen for technical assistance; and S. Gregory and C. Gillson for providing advice and BAC clones for FISH. Group 1 received support from the Imperial Cancer Research Fund and is grateful for help from the ICRF Equipment Park and Cell Production. Group 2 was supported by the Cancer Research Campaign and the Wellcome Trust. Group 3 was supported by grants from the Helsinki University Central Hospital, Biocentrum Helsinki, the Sigrid Juselius Foundation, the Finnish Cancer Society, the Finnish Medical Duodecim, Kidney Foundation and the Academy of Finland (Finnish Center of Excellence Programme).

Author information

Author notes

  1. N. Afrina Alam, Andrew J. Rowan, Stephen Bevan, Maija Kiuru and Rainer Lehtonen: These authors contributed equally to this work.

Authors and Affiliations

  1. Molecular and Population Genetics Laboratory, Imperial Cancer Research Fund, 44, Lincoln's Inn Fields, WC2A 3PX, London, UK
    Ian P.M. Tomlinson, N. Afrina Alam, Andrew J. Rowan, Ella Barclay, Emma E. M. Jaeger, Patricia Gorman, Hanan Lamlum & Rebecca R. Roylance
  2. Center for Cutaneous Research, St Bartholomew's and London School of Medicine and Dentistry, Queen Mary College, University of London, Whitechapel, London, UK
    David Kelsell & Irene Leigh
  3. Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, London, UK
    Shamima Rahman
  4. Neonatal Screening and Chemical Pathology, Sheffield Children's Hospital, Sheffield, S10 2TH, UK
    Simon Olpin
  5. Section of Cancer Genetics, Haddow Laboratories, Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
    Stephen Bevan, Karen Barker, Nicholas Hearle & Richard S. Houlston
  6. Department of Medical Genetics, Biomedicum Helsinki, PO Box 63 (Haartmaninkatu 8), FIN-00014
    Maija Kiuru, Rainer Lehtonen, Auli Karhu, Susa Vilkki, Päivi Laiho, Carita Eklund, Kristiina Aittomäki, Reijo Salovaara, Virpi Launonen & Lauri A. Aaltonen
  7. University of Helsinki, Finland
    Maija Kiuru, Maija Kiuru, Maija Kiuru, Rainer Lehtonen, Rainer Lehtonen, Rainer Lehtonen, Auli Karhu, Auli Karhu, Auli Karhu, Susa Vilkki, Susa Vilkki, Susa Vilkki, Päivi Laiho, Päivi Laiho, Päivi Laiho, Carita Eklund, Carita Eklund, Carita Eklund, Kristiina Aittomäki, Kristiina Aittomäki, Kristiina Aittomäki, Reijo Salovaara, Reijo Salovaara, Reijo Salovaara, Virpi Launonen, Virpi Launonen, Virpi Launonen, Lauri A. Aaltonen, Lauri A. Aaltonen & Lauri A. Aaltonen
  8. Department of Clinical Genetics, Oulu University Hospital, Kajaanintie 52, Oulu, FIN-90220, Finland
    Outi Vierimaa
  9. Departments of Clinical Genetics (Kiinamyllynkatu 4–8) and Medical Genetics (Kiinamyllynkatu 10), Turku University Hospital, Turku, FIN-20520, Finland
    Marja Hietala
  10. Finnish Red Cross Blood Transfusion Service, Kivihaantie 7, Helsinki, FIN-00310, Finland
    Pertti Sistonen
  11. Department of Pathology, Haartman Institute, PO Box 21 (Haartmaninkatu 3)
    Anders Paetau & Reijo Salovaara
  12. University of Helsinki, Helsinki, FIN-00014, Finland
    Anders Paetau, Anders Paetau, Anders Paetau, Reijo Salovaara, Reijo Salovaara & Reijo Salovaara
  13. Department of Pathology, Oulu University Hospital, Kajaanintie 52, Oulu, FIN-90220, Finland
    Riitta Herva

Consortia

The Multiple Leiomyoma Consortium

Corresponding authors

Correspondence toIan P.M. Tomlinson, Richard S. Houlston or Lauri A. Aaltonen.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Rights and permissions

About this article

Cite this article

The Multiple Leiomyoma Consortium. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer.Nat Genet 30, 406–410 (2002). https://doi.org/10.1038/ng849

Download citation