ASPM is a major determinant of cerebral cortical size (original) (raw)

References

  1. Aicardi, J. Diseases of the Nervous System in Childhood edn 2, 90–91 (MacKeith, London, 1998).
    Google Scholar
  2. Pattison, L. et al. A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31. Am. J. Hum. Genet. 67, 1578–1580 (2000).
    Article CAS Google Scholar
  3. Jamieson, C.R., Fryns, J.P., Jacobs, J., Matthijs, G. & Abramowicz, M.J. Primary autosomal recessive microcephaly: MCPH5 maps to 1q25–q32. Am. J. Hum. Genet. 67, 1575–1577 (2000).
    Article CAS Google Scholar
  4. Bundey, S. in Emery and Rimoin's Principles and Practice of Medical Genetics 3rd edn (eds Rimoin, D.L., Connor, J.M. & Pyeritz, R.E.) 730–731 (Churchill Livingstone, New York, 1997).
    Google Scholar
  5. Ripoll, P., Pimpinelli, S., Valdivia, M.M. & Avila, J. A cell division mutant of Drosophila with a functionally abnormal spindle. Cell 41, 907–912 (1985).
  6. Gonzalez, C. et al. Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts. J. Cell Sci. 96, 605–616 (1990).
    PubMed Google Scholar
  7. Mochida, G.H. & Walsh, C.A. Molecular genetics of human microcephaly. Curr. Opin. Neurol. 14, 151–156 (2001).
    Article CAS Google Scholar
  8. Jackson, A.P. et al. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22–pter. Am. J. Hum. Genet. 63, 541–546 (1998).
    Article CAS Google Scholar
  9. Roberts, E. et al. The second locus for autosomal recessive primary microcephaly (MCPH2) maps to chromosome 19q13.1–13.2. Eur. J. Hum. Genet. 7, 815–820 (1999).
    Article CAS Google Scholar
  10. Moynihan, L. et al. A third novel locus for primary autosomal recessive microcephaly maps to chromosome 9q34. Am. J. Hum. Genet. 66, 724–727 (2000).
    Article CAS Google Scholar
  11. Jamieson, C.R., Govaerts, C. & Abramowicz, M.J. Primary autosomal recessive microcephaly: homozygosity mapping of MCPH4 to chromosome 15. Am. J. Hum. Genet. 65, 1465–1469 (1999).
    Article CAS Google Scholar
  12. Roberts, E. et al. Autosomal recessive primary microcephaly: an analysis of locus heterogeneity and phentoypic variation. J. Med. Genet. (in press) (2002).
  13. Peltonen, L., Jalanko, A. & Varilo, T. Molecular genetics of the Finnish disease heritage. Hum. Mol. Genet. 8, 1913–1923 (1999).
    Article CAS Google Scholar
  14. den Hollander, A.I. et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nature Genet. 23, 217–221 (1999).
    Article CAS Google Scholar
  15. Saunders, R.D., Avides, M.C., Howard, T., Gonzalez, C. & Glover, D.M. The Drosophila gene abnormal spindle encodes a novel microtubule-associated protein that associates with the polar regions of the mitotic spindle. J. Cell Biol. 137, 881–890 (1997).
    Article CAS Google Scholar
  16. Craig, R. & Norbury, C. The novel murine calmodulin-binding protein Sha1 disrupts mitotic spindle and replication checkpoint functions in fission yeast. J. Cell Sci. 11, 3609–3619 (1998).
    Google Scholar
  17. Embryonic vertebrate central nervous system: revised terminology. The Boulder Committee. Anat. Rec. 166, 257–262 (1970).
  18. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).
    Article CAS Google Scholar
  19. Wichterle, H., Garcia-Verdugo, J.M., Herrera, D.G. & Alvarez-Buylla, A. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nature Neurosci. 2, 461–466 (1999).
    Article CAS Google Scholar
  20. Seri, B., Garcia-Verdugo, J.M., McEwen, B.S. & Alvarez-Buylla, A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160 (2001).
    Article CAS Google Scholar
  21. Gould, E., Tanapat, P., Rydel, T. & Hastings, N. Regulation of hippocampal neurogenesis in adulthood. Biol. Psychiatry 48, 715–720 (2000).
    Article CAS Google Scholar
  22. Doetsch, F. & Alvarez-Buylla, A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc. Natl Acad. Sci. USA 93, 14895–14900 (1996).
    Article CAS Google Scholar
  23. do Carmo Avides, M., Tavares, A. & Glover, D.M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol. 3, 421–424 (2001).
    Article CAS Google Scholar
  24. Wakefield, J.G., Bonaccorsi, S. & Gatti, M. The Drosophila protein asp is involved in microtubule organization during spindle formation and cytokinesis. J. Cell Biol. 153, 637–648 (2001).
    Article CAS Google Scholar
  25. Rakic, P. Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J. 54, 25–40 (1978).
    PubMed Google Scholar
  26. Takahashi, T., Nowakowski, R. and Caviness, V.S. Jr. The cell cycle of the pseudostratified ventricular epithelium of the murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).
    Article CAS Google Scholar
  27. Roegiers, F., Younger-Shepherd, S., Jan, L.Y. & Jan, Y.N. Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nature Cell Biol. 3, 58–67 (2001).
    Article CAS Google Scholar
  28. Lu, B., Jan, L. & Jan, Y.N. Control of cell divisions in the nervous system: symmetry and asymmetry. Annu. Rev. Neurosci. 23, 531–556 (2000).
    Article CAS Google Scholar
  29. Chenn, A. & McConnell, S.K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–642 (1995).
    Article CAS Google Scholar
  30. Bienz, M. Spindles cotton on to junctions, APC and EB1. Nature Cell Biol. 3, E67–E69 (2001).
    Article CAS Google Scholar

Download references