Saturn’s F ring and shepherd satellites a natural outcome of satellite system formation (original) (raw)

References

  1. Gehrels, T. et al. Imaging photopolarimeter on Pioneer Saturn. Science 207, 434–439 (1980).
    Article Google Scholar
  2. Smith, B. A. et al. Encounter with Saturn: Voyager 1 imaging science results. Science 212, 163–191 (1981).
    Article Google Scholar
  3. Smith, B. A. et al. A new look at the Saturn system: The Voyager 2 images. Science 215, 504–537 (1982).
    Article Google Scholar
  4. Charnoz, S., Salmon, J. & Crida, A. The recent formation of Saturn’s moonlets from viscous spreading of the main rings. Nature 465, 752–754 (2010).
    Article Google Scholar
  5. Canup, R. M. Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite. Nature 468, 943–946 (2010).
    Article Google Scholar
  6. Crida, A. & Charnoz, S. Formation of regular satellites from ancient massive rings in the Solar System. Science 338, 1196–1199 (2012).
    Article Google Scholar
  7. Hyodo, R., Ohtsuki, K. & Takeda, T. Formation of multiple-satellite systems from low-mass circumplanetary particle disks. Astrophys. J. 799, 40 (2015).
    Article Google Scholar
  8. Esposito, L. W. Planetary Rings: A Post-Equinox View (Cambridge Univ. Press, 2014).
    Book Google Scholar
  9. Nicholson, P. D. et al. Observations of Saturn’s ring-plane crossing in August and November 1995. Science 272, 509–516 (1996).
    Article Google Scholar
  10. Bosh, A. S., Olkin, C. B., French, R. G. & Nicholson, P. D. Saturn’s F ring: Kinematics and particle sizes from stellar occultation studies. Icarus 157, 57–75 (2002).
    Article Google Scholar
  11. Porco, C. C. et al. Cassini imaging science: Initial results on Saturn’s rings and small satellites. Science 307, 1226–1236 (2005).
    Article Google Scholar
  12. Charnoz, S. et al. Cassini discovers a kinematic spiral ring around Saturn. Science 310, 1300–1304 (2005).
    Article Google Scholar
  13. Murray, C. D. et al. The determination of the structure of Saturn’s F ring by nearby moonlets. Nature 453, 739–744 (2008).
    Article Google Scholar
  14. Ohtsuki, K. Capture probability of colliding planetesimals: Dynamical constraints on accretion of planets, satellites, and ring particles. Icarus 106, 228–246 (1993).
    Article Google Scholar
  15. Canup, R. M. & Esposito, L. W. Accretion in the Roche zone: Coexistence of rings and ring moons. Icarus 113, 331–352 (1995).
    Article Google Scholar
  16. Karjalainen, R. Aggregate impacts in Saturn’s rings. Icarus 189, 523–537 (2007).
    Article Google Scholar
  17. Hyodo, R. & Ohtsuki, K. Collisional disruption of gravitational aggregates in the tidal environment. Astrophys. J. 787, 56 (2014).
    Article Google Scholar
  18. Esposito, L. W., Meinke, B. K., Colwell, J. E., Nicholson, P. D. & Hedman, M. M. Moonlets and clumps in Saturn’s F ring. Icarus 194, 278–289 (2008).
    Article Google Scholar
  19. Beurle, K. et al. Direct evidence for gravitational instability and moonlet formation in Saturn’s rings. Astrophys. J. 718, L176–L180 (2010).
    Article Google Scholar
  20. Attree, N. O., Murray, C. D., Cooper, N. J. & Williams, G. A. Detection of low-velocity collisions in Saturn’s F ring. Astrophys. J. 755, L27 (2012).
    Article Google Scholar
  21. Cuzzi, J. N. & Burns, J. A. Charged particle depletion surrounding Saturn’s F ring: Evidence for a moonlet belt? Icarus 74, 284–324 (1988).
    Article Google Scholar
  22. Barbara, J. M. & Esposito, L. W. Moonlet collisions and the effects of tidally modified accretion in Saturn’s F ring. Icarus 160, 161–171 (2002).
    Article Google Scholar
  23. Showalter, M. R., Pollack, J. B., Ockert, M. E., Doyle, L. R. & Dalton, J. B. A photometric study of Saturn’s F ring. Icarus 100, 394–411 (1992).
    Article Google Scholar
  24. Canup, R. M. & Ward, W. R. A common mass scaling for satellite systems of gaseous planets. Nature 411, 834–839 (2006).
    Article Google Scholar
  25. Porco, C. C., Thomas, P. C., Weiss, J. W. & Richardson, D. C. Physical characteristics of Saturn’s small satellites provide clues to their origins. Science 318, 1602–1607 (2007).
    Article Google Scholar
  26. Cuzzi, J. N. et al. An evolving view of Saturn’s dynamic rings. Science 327, 1470–1475 (2010).
    Article Google Scholar
  27. Charnoz, S. et al. Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus 216, 535–550 (2011).
    Article Google Scholar
  28. Leinhardt, Z. M., Ogilvie, G. I., Latter, H. N. & Kokubo, E. Tidal disruption of satellites and formation of narrow rings. Mon. Not. R. Astron. Soc. 424, 1419–1431 (2012).
    Article Google Scholar
  29. Murray, C. D., Gordon, M. K. & Giuliatti Winter, S. M. Unraveling the strands of Saturn’s F ring. Icarus 129, 304–316 (1997).
    Article Google Scholar
  30. Poulet, F. & Sicardy, B. Dynamical evolution of the Prometheus-Pandora system. Mon. Not. R. Astron. Soc. 322, 343–355 (2001).
    Article Google Scholar
  31. Nakazawa, K., Ida, S. & Nakagawa, Y. Collisional probability of planetesimals revolving in the Solar gravitational field I. Basic formulation. Astron. Astrophys. 220, 293–300 (1989).
    Google Scholar
  32. Ohtsuki, K. Collisions and gravitational interactions between particles in planetary rings. Prog. Theor. Phys. Suppl. 195, 29–47 (2012).
    Article Google Scholar
  33. Quinn, T., Perrine, R. P., Richardson, D. C. & Barnes, R. A symplectic integrator for Hill’s equations. Astron. J. 139, 803–807 (2010).
    Article Google Scholar
  34. Rein, H. & Liu, S.-F. REBOUND: An open-source multi-purpose _N_-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).
    Article Google Scholar

Download references