Saturn’s F ring and shepherd satellites a natural outcome of satellite system formation (original) (raw)
References
Gehrels, T. et al. Imaging photopolarimeter on Pioneer Saturn. Science207, 434–439 (1980). Article Google Scholar
Smith, B. A. et al. Encounter with Saturn: Voyager 1 imaging science results. Science212, 163–191 (1981). Article Google Scholar
Smith, B. A. et al. A new look at the Saturn system: The Voyager 2 images. Science215, 504–537 (1982). Article Google Scholar
Charnoz, S., Salmon, J. & Crida, A. The recent formation of Saturn’s moonlets from viscous spreading of the main rings. Nature465, 752–754 (2010). Article Google Scholar
Canup, R. M. Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite. Nature468, 943–946 (2010). Article Google Scholar
Crida, A. & Charnoz, S. Formation of regular satellites from ancient massive rings in the Solar System. Science338, 1196–1199 (2012). Article Google Scholar
Hyodo, R., Ohtsuki, K. & Takeda, T. Formation of multiple-satellite systems from low-mass circumplanetary particle disks. Astrophys. J.799, 40 (2015). Article Google Scholar
Esposito, L. W. Planetary Rings: A Post-Equinox View (Cambridge Univ. Press, 2014). Book Google Scholar
Nicholson, P. D. et al. Observations of Saturn’s ring-plane crossing in August and November 1995. Science272, 509–516 (1996). Article Google Scholar
Bosh, A. S., Olkin, C. B., French, R. G. & Nicholson, P. D. Saturn’s F ring: Kinematics and particle sizes from stellar occultation studies. Icarus157, 57–75 (2002). Article Google Scholar
Porco, C. C. et al. Cassini imaging science: Initial results on Saturn’s rings and small satellites. Science307, 1226–1236 (2005). Article Google Scholar
Charnoz, S. et al. Cassini discovers a kinematic spiral ring around Saturn. Science310, 1300–1304 (2005). Article Google Scholar
Murray, C. D. et al. The determination of the structure of Saturn’s F ring by nearby moonlets. Nature453, 739–744 (2008). Article Google Scholar
Ohtsuki, K. Capture probability of colliding planetesimals: Dynamical constraints on accretion of planets, satellites, and ring particles. Icarus106, 228–246 (1993). Article Google Scholar
Canup, R. M. & Esposito, L. W. Accretion in the Roche zone: Coexistence of rings and ring moons. Icarus113, 331–352 (1995). Article Google Scholar
Karjalainen, R. Aggregate impacts in Saturn’s rings. Icarus189, 523–537 (2007). Article Google Scholar
Hyodo, R. & Ohtsuki, K. Collisional disruption of gravitational aggregates in the tidal environment. Astrophys. J.787, 56 (2014). Article Google Scholar
Esposito, L. W., Meinke, B. K., Colwell, J. E., Nicholson, P. D. & Hedman, M. M. Moonlets and clumps in Saturn’s F ring. Icarus194, 278–289 (2008). Article Google Scholar
Beurle, K. et al. Direct evidence for gravitational instability and moonlet formation in Saturn’s rings. Astrophys. J.718, L176–L180 (2010). Article Google Scholar
Attree, N. O., Murray, C. D., Cooper, N. J. & Williams, G. A. Detection of low-velocity collisions in Saturn’s F ring. Astrophys. J.755, L27 (2012). Article Google Scholar
Cuzzi, J. N. & Burns, J. A. Charged particle depletion surrounding Saturn’s F ring: Evidence for a moonlet belt? Icarus74, 284–324 (1988). Article Google Scholar
Barbara, J. M. & Esposito, L. W. Moonlet collisions and the effects of tidally modified accretion in Saturn’s F ring. Icarus160, 161–171 (2002). Article Google Scholar
Showalter, M. R., Pollack, J. B., Ockert, M. E., Doyle, L. R. & Dalton, J. B. A photometric study of Saturn’s F ring. Icarus100, 394–411 (1992). Article Google Scholar
Canup, R. M. & Ward, W. R. A common mass scaling for satellite systems of gaseous planets. Nature411, 834–839 (2006). Article Google Scholar
Porco, C. C., Thomas, P. C., Weiss, J. W. & Richardson, D. C. Physical characteristics of Saturn’s small satellites provide clues to their origins. Science318, 1602–1607 (2007). Article Google Scholar
Cuzzi, J. N. et al. An evolving view of Saturn’s dynamic rings. Science327, 1470–1475 (2010). Article Google Scholar
Charnoz, S. et al. Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons. Icarus216, 535–550 (2011). Article Google Scholar
Leinhardt, Z. M., Ogilvie, G. I., Latter, H. N. & Kokubo, E. Tidal disruption of satellites and formation of narrow rings. Mon. Not. R. Astron. Soc.424, 1419–1431 (2012). Article Google Scholar
Murray, C. D., Gordon, M. K. & Giuliatti Winter, S. M. Unraveling the strands of Saturn’s F ring. Icarus129, 304–316 (1997). Article Google Scholar
Poulet, F. & Sicardy, B. Dynamical evolution of the Prometheus-Pandora system. Mon. Not. R. Astron. Soc.322, 343–355 (2001). Article Google Scholar
Nakazawa, K., Ida, S. & Nakagawa, Y. Collisional probability of planetesimals revolving in the Solar gravitational field I. Basic formulation. Astron. Astrophys.220, 293–300 (1989). Google Scholar
Ohtsuki, K. Collisions and gravitational interactions between particles in planetary rings. Prog. Theor. Phys. Suppl.195, 29–47 (2012). Article Google Scholar
Quinn, T., Perrine, R. P., Richardson, D. C. & Barnes, R. A symplectic integrator for Hill’s equations. Astron. J.139, 803–807 (2010). Article Google Scholar
Rein, H. & Liu, S.-F. REBOUND: An open-source multi-purpose _N_-body code for collisional dynamics. Astron. Astrophys.537, A128 (2012). Article Google Scholar