N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone (original) (raw)

References

  1. Codispoti, L. A. et al. The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci. Mar. 65, 85–105 (2001).
    Article Google Scholar
  2. Kuypers, M. M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA 102, 6478–6483 (2005).
    Article Google Scholar
  3. Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl Acad. Sci. USA 109, 15996–16003 (2012).
    Article Google Scholar
  4. Naqvi, W. S. A., Narvekar, P. V. & Desa, E. in The Sea Vol. 14 (eds Robinson, A. R. & Brink, K. H.) 723–781 (Harvard Univ. Press, 2005).
    Google Scholar
  5. Sarma, V. et al. Intensified oxygen minimum zone on the western shelf of Bay of Bengal during summer monsoon: influence of river discharge. J. Oceanogr. 69, 45–55 (2013).
    Article Google Scholar
  6. Rao, C. K. et al. Hydrochemistry of the Bay of Bengal: possible reasons for a different water-column cycling of carbon and nitrogen from the Arabian Sea. Mar. Chem. 47, 279–290 (1994).
    Article Google Scholar
  7. Revsbech, N. P. et al. Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnol. Oceanogr. 7, 371–381 (2009).
    Article Google Scholar
  8. Larsen, M. et al. In situ quantification of ultra-low O2 concentrations in oxygen minimum zones: application of novel optodes. Limnol. Oceanogr. Methods http://dx.doi.org/10.1002/lom3.10126 (2016).
  9. Thamdrup, B., Dalsgaard, T. & Revsbech, N. P. Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep-Sea Res. I 65, 36–45 (2012).
    Article Google Scholar
  10. Tiano, L. et al. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones. Deep-Sea Res. I 94, 173–183 (2014).
    Article Google Scholar
  11. Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. USA 106, 4752–4757 (2009).
    Article Google Scholar
  12. Jensen, M. M. et al. Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J. 5, 1660–1670 (2011).
    Article Google Scholar
  13. Kalvelage, T. et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nat. Geosci. 6, 228–234 (2013).
    Article Google Scholar
  14. Beman, J. M., Shih, J. L. & Popp, B. N. Nitrite oxidation in the upper water column and oxygen minimum zone of the eastern tropical North Pacific Ocean. ISME J. 7, 2192–2205 (2013).
    Article Google Scholar
  15. Beman, J. M., Popp, B. N. & Alford, S. E. Quantification of ammonia oxidation rates and ammonia-oxidizing archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean. Limnol. Oceanogr. 57, 711–726 (2012).
    Article Google Scholar
  16. Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science 330, 1375–1378 (2010).
    Article Google Scholar
  17. Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 9, 2682–2696 (2015).
    Article Google Scholar
  18. Kalvelage, T. et al. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones. PLoS ONE 6, e29299 (2011).
    Article Google Scholar
  19. Dalsgaard, T. et al. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off Northern Chile. mBio 5, e01966-14 (2014).
    Article Google Scholar
  20. Bristow, L. A. et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc. Natl Acad. Sci. USA 113, 10601–10606 (2016).
    Article Google Scholar
  21. Füssel, J. et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 6, 1200–1209 (2012).
    Article Google Scholar
  22. Hamme, R. C. & Emerson, S. R. Mechanisms controlling the global oceanic distribution of the inert gases argon, nitrogen and neon. Geophys. Res. Lett. 29, 2120 (2009).
    Google Scholar
  23. Chang, B. X., Devol, A. H. & Emerson, S. R. Fixed nitrogen loss from the eastern tropical North Pacific and Arabian Sea oxygen deficient zones determined from measurements of N2:Ar. Glob. Biogeochem. Cycles 26, GB3030 (2012).
    Article Google Scholar
  24. Casciotti, K. L., Buchwald, C. & McIlvin, M. Implications of nitrate and nitrite isotope measurements for the mechanisms of nitrogen cycling in the Peru oxygen deficient zone. Deep-Sea Res. I 80, 78–93 (2013).
    Article Google Scholar
  25. Sarma, V. V. S. S. An evaluation of physical and biogeochemical processes regulating perennial suboxic conditions in the water column of the Arabian Sea. Glob. Biogeochem. Cycles 16, 1082 (2002).
    Google Scholar
  26. DeVries, T., Deutsch, C., Primeau, F., Chang, B. X. & Devol, A. Global rates of water-column denitrification derived from nitrogen gas measurements. Nat. Geosci. 5, 547–550 (2012).
    Article Google Scholar
  27. Lam, P. & Kuypers, M. M. M. Microbial nitrogen cycling processes in oxygen minimum zones. Annu. Rev. Mar. Sci. 3, 317–345 (2011).
    Article Google Scholar
  28. Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).
    Article Google Scholar
  29. Gomes, H. R., Goes, J. I. & Saino, T. Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Cont. Shelf Res. 20, 313–330 (2000).
    Article Google Scholar
  30. Sardessai, S., Ramaiah, N., Kumar, S. P. & de Sousa, S. N. Influence of environmental forcings on the seasonality of dissolved oxygen and nutrients in the Bay of Bengal. J. Mar. Res. 65, 301–316 (2007).
    Article Google Scholar
  31. Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).
    Article Google Scholar
  32. Pattan, J. N. et al. Coupling between suboxic condition in sediments of the western Bay of Bengal and southwest monsoon intensification: a geochemical study. Chem. Geol. 343, 55–66 (2013).
    Article Google Scholar
  33. Giovannoni, S. J., Rappe, M. S., Vergin, K. L. & Adair, N. L. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc. Natl Acad. Sci. USA 93, 7979–7984 (1996).
    Article Google Scholar
  34. Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis 3rd edn (Wiley-VCH, 1999).
    Book Google Scholar
  35. Charoenpong, C. N., Bristow, L. A. & Altabet, M. A. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition. Limnol. Oceanogr. 12, 323–337 (2014).
    Article Google Scholar
  36. Devol, A. H. et al. Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone. Deep-Sea Res. I 53, 1533–1547 (2006).
    Article Google Scholar
  37. McIlvin, M. R. & Altabet, M. A. Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem. 77, 5589–5595 (2005).
    Article Google Scholar
  38. Ryabenko, E., Altabet, M. A. & Wallace, D. W. R. Effect of chloride on the chemical conversion of nitrate to nitrous oxide for δ15N analysis. Limnol. Oceanogr. 7, 545–552 (2009).
    Article Google Scholar
  39. Granger, J. & Sigman, D. M. Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun. Mass Spectrom. 23, 3753–3762 (2009).
    Article Google Scholar
  40. Bohlke, J. K., Mroczkowski, S. J. & Coplen, T. B. Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun. Mass Spectrom. 17, 1835–1846 (2003).
    Article Google Scholar
  41. Holtappels, M., Lavik, G., Jensen, M. M. & Kuypers, M. M. M. 15N-labeling experiments to dissect the contributions of heterotrophic denitrification and anammox to nitrogen removal in the OMZ waters of the ocean. Methods Enzymol. 486, 223–251 (2011).
    Article Google Scholar
  42. De Brabandere, L., Thamdrup, B., Revsbech, N. P. & Foadi, R. A critical assessment of the occurrence and extend of oxygen contamination during anaerobic incubations utilizing commercially available vials. J. Microbiol. Methods 88, 147–154 (2012).
    Article Google Scholar
  43. Lehner, P. et al. LUMOS - a sensitive and reliable optode system for measuring dissolved oxygen in the nanomolar range. PLoS ONE 10, e0128125 (2015).
    Article Google Scholar
  44. Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68, 1312–1318 (2002).
    Article Google Scholar
  45. Tiano, L., Garcia-Robledo, E. & Revsbech, N. P. A new highly sensitive method to assess respiration rates and kinectics of natural planktonic communities by use of the switchable trace oxygen sensor and reduced oxygen concentrations. PLoS ONE 9, e105399 (2014).
    Article Google Scholar
  46. Dalsgaard, T., Thamdrup, B., Farias, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).
    Article Google Scholar

Download references