Tropical cyclones and climate change (original) (raw)

References

  1. Santer, B. D. et al. Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc. Natl Acad. Sci. USA 103, 13905–13910 (2006).
    Article Google Scholar
  2. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
  3. Karl, T. R. et al. (eds) Weather and Climate Extremes in a Changing Climate. Regions of Focus: North America, Hawaii, Caribbean, and US Pacific Islands. (US Climate Change Science Program and Subcommittee on Global Change Research, Department of Commerce, NOAA National Climatic Data Center, 2008).
    Google Scholar
  4. Gillett, N. P., Stott, P. A. & Santer, B. D. Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys. Res. Lett. 35, L09707 (2008).
    Article Google Scholar
  5. Pielke, R. A. Jr et al. Normalized hurricane damages in the United States: 1900–2005 Nat. Hazard. Rev. 9, 29–42 (2008).
    Article Google Scholar
  6. WMO International Workshop on Tropical Cyclones Statement on Tropical Cyclones and Climate Change (World Meteorological Organization, 2006); available at: http://www.wmo.int/pages/prog/arep/tmrp/documents/iwtc_statement.pdf and http://www.wmo.int/pages/prog/arep/tmrp/documents/iwtc_summary.pdf.
  7. Emanuel, K. Environmental factors affecting tropical cyclone power dissipation. J. Clim. 20, 5497–5509 (2007).
    Article Google Scholar
  8. Swanson, K. Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosys. 9, Q04V01 (2008).
    Article Google Scholar
  9. Vecchi, G. A., Swanson, K. L. & Soden, B. J. Whither hurricane activity. Science 322, 687–689 (2008).
    Article Google Scholar
  10. Oouchi, K. et al. Tropical cyclone climatology in a global-warming climate as simulated in a 20km-mesh global atmospheric model: frequency and wind intensity analysis. J. Meteorol. Soc. Jpn 84, 259–276 (2006).
    Article Google Scholar
  11. Emanuel, K., Sundararajan, R. & Williams, J. Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull. Am. Meteor. Soc. 89, 347–367 (2008).
    Article Google Scholar
  12. Knutson, T. R., Sirutis, J. J., Garner, S. T., Vecchi, G. A. & Held, I. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nature Geosci. 1, 359–364 (2008).
    Article Google Scholar
  13. Bengtsson, L. et al. How may tropical cyclones change in a warmer climate. Tellus 59A, 539–561 (2007).
    Article Google Scholar
  14. Chan, J. C. L. Thermodynamic control on the climate of intense tropical cyclones. Proc. R. Soc. A. 465, 3011–3021 (2009).
    Article Google Scholar
  15. Holland, G. J. & Webster, P. J. Heightened tropical cyclone activity in the North Atlantic: natural variability or climate trend? Phil. Trans. R. Soc. A 365, 2695–2716 (2007).
    Article Google Scholar
  16. Mann, M. & Emanuel, K. Atlantic hurricane trends linked to climate change. Eos 87, 233–241 (2006).
    Article Google Scholar
  17. Mann, M. E., Sabbatelli, T. A. & Neu, U. Evidence for a modest undercount bias in early historical Atlantic tropical cyclone counts. Geophys. Res. Lett. 34, L22707 (2007).
    Article Google Scholar
  18. Zhang, R. & Delworth, T. L. A new method for attributing climate variations over the Atlantic Hurricane Basin's main development region. Geophys. Res. Lett. 36, L06701 (2009).
    Google Scholar
  19. Shanahan, T. M. et al. Atlantic forcing of persistent droughts in West Africa. Science 324, 377–380 (2009).
    Article Google Scholar
  20. Vecchi, G. A. & Knutson, T. R. On estimates of historical North Atlantic tropical cyclone activity. J. Clim. 21, 3580–3600 (2008).
    Article Google Scholar
  21. Chang, E. K. M. & Guo, Y. Is the number of North Atlantic tropical cyclones significantly underestimated prior to the availability of satellite observations? Geophys. Res. Lett. 34, L14801 (2007).
    Article Google Scholar
  22. Landsea, C., Vecchi, G. A., Bengtsson, L. & Knutson, T. R. Impact of duration thresholds on Atlantic tropical cyclone counts. J. Clim. doi:10.1175/2009JCLI3034.1 (2009).
  23. Landsea, C. W. et al. A reanalysis of the 1911–20 Atlantic hurricane database. J. Clim. 21, 2138–2168 (2008).
    Article Google Scholar
  24. Mann, M. E., Woodruff, J. D., Donnelly, J. P. & Zhang, Z. Atlantic hurricanes and climate over the past 1,500 years. Nature 460, 880–883 (2009).
    Article Google Scholar
  25. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).
    Article Google Scholar
  26. Chan, J. C. L. & Xu, M. Interannual and interdecadal variations of landfalling tropical cyclones in East Asia. Part I: Time series analysis. Int. J. Climatol. 29, 1285–1293 (2009).
    Article Google Scholar
  27. Kubota, H. & Chan, J. C. L. Interdecadal variability of tropical cyclone landfall in the Philippines from 1902 to 2005. Geophys. Res. Lett. 36, L12802 (2009).
    Article Google Scholar
  28. Gualdi, S., Scoccimarro, E. & Navarra, A. Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J. Clim. 21, 5204–5228 (2008).
    Article Google Scholar
  29. Zhao, M., Held, I., Lin, S.-J. & Vecchi, G. A. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. J. Clim. 22, 6653–6678 (2009).
    Article Google Scholar
  30. LaRow, T. E., Lim, Y. K., Shin, D. W., Chassignet, E. P. & Cocke, S. Atlantic basin seasonal hurricane simulations. J. Clim. 21, 3191–3206 (2008).
    Article Google Scholar
  31. Chauvin, F., Royer, J.-F. & Déqué, M. Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climat at high resolution. Clim. Dynam. 27, 377–399 (2006).
    Article Google Scholar
  32. Sugi, M., Noda, A & Sato, N. Influence of global warming on tropical cyclone climatology: an experiment with the JMA global model. J. Meteorol. Soc. Jpn 80, 249–272 (2002).
    Article Google Scholar
  33. Held, I. M. & Soden, B. J. Robust responses of the hydrologic cycle to global warming. J. Clim. 19, 5686–5699 (2006).
    Article Google Scholar
  34. Vecchi, G. A. & Soden, B. J. Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34, L08702 (2007).
    Article Google Scholar
  35. Emanuel, K. A. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).
    Article Google Scholar
  36. Holland, G. J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 54, 2519–2541 (1997).
    Article Google Scholar
  37. Knutson, T. R. & Tuleya, R. E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J. Clim. 17, 3477–3495 (2004).
    Article Google Scholar
  38. Bender, M. A. et al. Modeled impact of anthropogenic warming of the frequency of intense Atlantic hurricanes. Science 327, 454–458 (2010).
    Article Google Scholar
  39. Landsea, C. W., Harper, B. A., Hoarau, K. & Knaff, J. A. Can we detect trends in extreme tropical cyclones? Science 313, 452–454 (2006).
    Article Google Scholar
  40. Kamahori, H., Yamazaki, N. Mannoji, N. & Takahashi, K. Variability in intense tropical cyclone days in the western North Pacific. SOLA 2, 104–107 (2006).
    Article Google Scholar
  41. Chan, J. C. L. Comment on “changes in tropical cyclone number, duration, and intensity in a warming environment” Science 311, 1713 (2006).
    Article Google Scholar
  42. Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J. & Harper, B. A. A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett. 34, L04815 (2007).
    Article Google Scholar
  43. Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).
    Article Google Scholar
  44. Kossin J. P. & Vimont, D. J. A more general framework for understanding Atlantic hurricane variability and trends. Bull. Am. Meteor. Soc. 88, 1767–1781 (2007).
    Article Google Scholar
  45. Sugi, M., Murakami, H. & Yoshimura, J. A reduction in global tropical cyclone frequency due to global warming. SOLA 5, 164–167 (2009).
    Article Google Scholar
  46. Trenberth, K. E., Fasullo, J. & Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dynam. 24, 741–758 (2005).
    Article Google Scholar
  47. Lau, K.-M. & Wu, H. T. Detecting trends in tropical rainfall characteristics, 1979–2003 Int. J. Climatol. 27, 979–988 (2007).
    Article Google Scholar
  48. Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).
    Article Google Scholar
  49. Holland, G. J. Misuse of landfall as a proxy for Atlantic tropical cyclone activity. Eos 88, 349–350 (2007).
    Article Google Scholar

Download references