Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes (original) (raw)
Kahn, S.E., Hull, R.L. & Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature444, 840–846 (2006). ArticleCASPubMed Google Scholar
Njajou, O.T. et al. Association between oxidized LDL, obesity and type 2 diabetes in a population-based cohort, the Health, Aging and Body Composition Study. Diabetes Metab. Res. Rev.25, 733–739 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bendtzen, K. et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science232, 1545–1547 (1986). ArticleCASPubMed Google Scholar
Spranger, J. et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes52, 812–817 (2003). ArticleCASPubMed Google Scholar
Larsen, C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med.356, 1517–1526 (2007). ArticleCASPubMed Google Scholar
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature440, 237–241 (2006). ArticleCASPubMed Google Scholar
Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol.9, 847–856 (2008). ArticleCASPubMedPubMed Central Google Scholar
Clark, A. et al. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res.9, 151–159 (1988). CASPubMed Google Scholar
Cooper, G.J. et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA84, 8628–8632 (1987). ArticleCASPubMedPubMed Central Google Scholar
Westermark, P. et al. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA84, 3881–3885 (1987). ArticleCASPubMedPubMed Central Google Scholar
Butler, A.E. et al. Diabetes due to a progressive defect in beta-cell mass in rats transgenic for human islet amyloid polypeptide (HIP Rat): a new model for type 2 diabetes. Diabetes53, 1509–1516 (2004). ArticleCASPubMed Google Scholar
Janson, J. et al. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc. Natl. Acad. Sci. USA93, 7283–7288 (1996). ArticleCASPubMedPubMed Central Google Scholar
Verchere, C.B. et al. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc. Natl. Acad. Sci. USA93, 3492–3496 (1996). ArticleCASPubMedPubMed Central Google Scholar
Howard, C.F. Jr. Longitudinal studies on the development of diabetes in individual Macaca nigra. Diabetologia29, 301–306 (1986). ArticlePubMed Google Scholar
Seino, S. S20G mutation of the amylin gene is associated with type II diabetes in Japanese. Study Group of Comprehensive Analysis of Genetic Factors in Diabetes Mellitus. Diabetologia44, 906–909 (2001). ArticleCASPubMed Google Scholar
Ma, Z. et al. Enhanced in vitro production of amyloid-like fibrils from mutant (S20G) islet amyloid polypeptide. Amyloid8, 242–249 (2001). ArticleCASPubMed Google Scholar
Udayasankar, J. et al. Amyloid formation results in recurrence of hyperglycaemia following transplantation of human IAPP transgenic mouse islets. Diabetologia52, 145–153 (2009). ArticleCASPubMed Google Scholar
Westermark, P., Eizirik, D.L., Pipeleers, D.G., Hellerstrom, C. & Andersson, A. Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia38, 543–549 (1995). ArticleCASPubMed Google Scholar
Westermark, G.T., Westermark, P., Berne, C. & Korsgren, O. Widespread amyloid deposition in transplanted human pancreatic islets. N. Engl. J. Med.359, 977–979 (2008). ArticleCASPubMed Google Scholar
Lorenzo, A., Razzaboni, B., Weir, G.C. & Yankner, B.A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature368, 756–760 (1994). ArticleCASPubMed Google Scholar
Janson, J., Ashley, R.H., Harrison, D., McIntyre, S. & Butler, P.C. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes48, 491–498 (1999). ArticleCASPubMed Google Scholar
Zraika, S. et al. Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced beta cell apoptosis. Diabetologia52, 626–635 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zraika, S. et al. Toxic oligomers and islet beta cell death: guilty by association or convicted by circumstantial evidence? Diabetologia53, 1046–1056 (2010). ArticleCASPubMedPubMed Central Google Scholar
Badman, M.K., Pryce, R.A., Charge, S.B., Morris, J.F. & Clark, A. Fibrillar islet amyloid polypeptide (amylin) is internalised by macrophages but resists proteolytic degradation. Cell Tissue Res.291, 285–294 (1998). ArticleCASPubMed Google Scholar
de Koning, E.J. et al. Macrophages and pancreatic islet amyloidosis. Amyloid5, 247–254 (1998). ArticleCASPubMed Google Scholar
Gitter, B.D., Cox, L.M., Carlson, C.D. & May, P.C. Human amylin stimulates inflammatory cytokine secretion from human glioma cells. Neuroimmunomodulation7, 147–152 (2000). ArticleCASPubMed Google Scholar
Yates, S.L. et al. Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J. Neurochem.74, 1017–1025 (2000). ArticleCASPubMed Google Scholar
Sharp, F.A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. USA106, 870–875 (2009). ArticleCASPubMedPubMed Central Google Scholar
Keller, M., Ruegg, A., Werner, S. & Beer, H.D. Active caspase-1 is a regulator of unconventional protein secretion. Cell132, 818–831 (2008). ArticleCASPubMed Google Scholar
Hay, D.L., Christopoulos, G., Christopoulos, A., Poyner, D.R. & Sexton, P.M. Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol. Pharmacol.67, 1655–1665 (2005). ArticleCASPubMed Google Scholar
Hamon, Y. et al. Interleukin-1β secretion is impaired by inhibitors of the Atp binding cassette transporter, ABC1. Blood90, 2911–2915 (1997). CASPubMed Google Scholar
Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol.11, 136–140 (2010). ArticleCASPubMed Google Scholar
Boni-Schnetzler, M. et al. Increased interleukin (IL)-1β messenger ribonucleic acid expression in beta-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab.93, 4065–4074 (2008). ArticlePubMedPubMed Central Google Scholar
Maedler, K. et al. Glucose-induced beta cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest.110, 851–860 (2002). ArticleCASPubMedPubMed Central Google Scholar
Welsh, N. et al. Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets? Diabetes54, 3238–3244 (2005). ArticleCASPubMed Google Scholar
Miller, Y.I. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem.278, 1561–1568 (2003). ArticleCASPubMed Google Scholar
Apolinario, E. et al. Minimally modified (electronegative) LDL– and Anti-LDL– autoantibodies in diabetes mellitus and impaired glucose tolerance. Int. J Atheroscler.1, 42–47 (2006). CAS Google Scholar
Yano, M. et al. Increased electronegative charge of serum low-density lipoprotein in patients with diabetes mellitus. Clin. Chim. Acta340, 93–98 (2004). ArticleCASPubMed Google Scholar
Abderrahmani, A. et al. Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia50, 1304–1314 (2007). ArticleCASPubMed Google Scholar
Bauernfeind, F.G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol.183, 787–791 (2009). ArticleCASPubMed Google Scholar
Matveyenko, A.V. & Butler, P.C. Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J.47, 225–233 (2006). ArticleCASPubMed Google Scholar
Hull, R.L. et al. Increased dietary fat promotes islet amyloid formation and beta-cell secretory dysfunction in a transgenic mouse model of islet amyloid. Diabetes52, 372–379 (2003). ArticleCASPubMed Google Scholar
Butler, A.E., Janson, J., Soeller, W.C. & Butler, P.C. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes52, 2304–2314 (2003). ArticleCASPubMed Google Scholar
van de Veerdonk, F.L. et al. Reactive oxygen species-independent activation of the IL-1β inflammasome in cells from patients with chronic granulomatous disease. Proc. Natl. Acad. Sci. USA107, 3030–3033 (2010). ArticleCASPubMedPubMed Central Google Scholar
Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature464, 1357–1361 (2010). ArticleCASPubMedPubMed Central Google Scholar
Russell, J.C. & Proctor, S.D. Increased insulin sensitivity and reduced micro and macro vascular disease induced by 2-deoxy-D-glucose during metabolic syndrome in obese JCR: LA-cp rats. Br. J. Pharmacol.151, 216–225 (2007). ArticleCASPubMedPubMed Central Google Scholar
Michalska, M., Wolf, G., Walther, R. & Newsholme, P. The effects of pharmacologic inhibition of NADPH oxidase or iNOS on pro-inflammatory cytokine, palmitic acid or H2O2 -induced mouse islet or clonal pancreatic beta cell dysfunction. Biosci. Rep., published online doi:10.1042/BSR20090138 (23 February 2010).
Nilsson, M.R. Techniques to study amyloid fibril formation in vitro. Methods34, 151–160 (2004). ArticleCASPubMed Google Scholar
Wang, F., Hull, R.L., Vidal, J., Cnop, M. & Kahn, S.E. Islet amyloid develops diffusely throughout the pancreas before becoming severe and replacing endocrine cells. Diabetes50, 2514–2520 (2001). ArticleCASPubMed Google Scholar