The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells (original) (raw)
Kraehenbuhl, J.P. & Neutra, M.R. Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol.16, 301–332 (2000). ArticleCASPubMed Google Scholar
Neutra, M.R., Mantis, N.J. & Kraehenbuhl, J.P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol.2, 1004–1009 (2001). ArticleCASPubMed Google Scholar
Neutra, M.R., Frey, A. & Kraehenbuhl, J.P. Epithelial M cells: gateways for mucosal infection and immunization. Cell86, 345–348 (1996). ArticleCASPubMed Google Scholar
Bockman, D.E. & Cooper, M.D. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix, and Peyer's patches. An electron microscopic study. Am. J. Anat.136, 455–477 (1973). ArticleCASPubMed Google Scholar
Owen, R.L. & Jones, A.L. Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology66, 189–203 (1974). CASPubMed Google Scholar
Hase, K. et al. Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature462, 226–230 (2009). ArticleCASPubMed Google Scholar
Terahara, K. et al. Comprehensive gene expression profiling of Peyer's patch M cells, villous M-like cells, and intestinal epithelial cells. J. Immunol.180, 7840–7846 (2008). ArticleCASPubMed Google Scholar
Hase, K. et al. Distinct gene expression profiles characterize cellular phenotypes of follicle-associated epithelium and M cells. DNA Res.12, 127–137 (2005). ArticleCASPubMed Google Scholar
Verbrugghe, P. et al. Murine M cells express annexin V specifically. J. Pathol.209, 240–249 (2006). ArticleCASPubMed Google Scholar
Hase, K. et al. The membrane-bound chemokine CXCL16 expressed on follicle-associated epithelium and M cells mediates lympho-epithelial interaction in GALT. J. Immunol.176, 43–51 (2006). ArticleCASPubMed Google Scholar
Hase, K. et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol.11, 1427–1432 (2009). ArticleCASPubMed Google Scholar
Barker, N. & Clevers, H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology138, 1681–1696 (2010). ArticleCASPubMed Google Scholar
Gebert, A., Fassbender, S., Werner, K. & Weissferdt, A. The development of M cells in Peyer's patches is restricted to specialized dome-associated crypts. Am. J. Pathol.154, 1573–1582 (1999). ArticleCASPubMedPubMed Central Google Scholar
Golovkina, T.V., Shlomchik, M., Hannum, L. & Chervonsky, A. Organogenic role of B lymphocytes in mucosal immunity. Science286, 1965–1968 (1999). ArticleCASPubMed Google Scholar
Kernéis, S., Bogdanova, A., Kraehenbuhl, J.P. & Pringault, E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science277, 949–952 (1997). ArticlePubMed Google Scholar
Taylor, R.T. et al. Lymphotoxin-independent expression of TNF-related activation-induced cytokine by stromal cells in cryptopatches, isolated lymphoid follicles, and Peyer's patches. J. Immunol.178, 5659–5667 (2007). ArticleCASPubMed Google Scholar
Knoop, K.A. et al. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J. Immunol.183, 5738–5747 (2009). ArticleCASPubMed Google Scholar
Jensen, J. et al. Control of endodermal endocrine development by Hes-1. Nat. Genet.24, 36–44 (2000). ArticleCASPubMed Google Scholar
Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol.192, 767–780 (2011). ArticleCASPubMedPubMed Central Google Scholar
Katz, J.P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development129, 2619–2628 (2002). CASPubMed Google Scholar
Bastide, P. et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J. Cell Biol.178, 635–648 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mori-Akiyama, Y. et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology133, 539–546 (2007). ArticleCASPubMed Google Scholar
Jenny, M. et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J.21, 6338–6347 (2002). ArticleCASPubMedPubMed Central Google Scholar
Su, G.H. et al. The Ets protein Spi-B is expressed exclusively in B cells and T cells during development. J. Exp. Med.184, 203–214 (1996). ArticleCASPubMed Google Scholar
Schotte, R. et al. The transcription factor Spi-B is expressed in plasmacytoid DC precursors and inhibits T-, B-, and NK-cell development. Blood101, 1015–1023 (2003). ArticleCASPubMed Google Scholar
Jang, M.H. et al. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA101, 6110–6115 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rumbo, M., Sierro, F., Debard, N., Kraehenbuhl, J.-P. & Finke, D. Lymphotoxin β receptor signaling induces the chemokine CCL20 in intestinal epithelium. Gastroenterology127, 213–223 (2004). ArticleCASPubMed Google Scholar
Mach, J., Hshieh, T., Hsieh, D., Grubbs, N. & Chervonsky, A. Development of intestinal M cells. Immunol. Rev.206, 177–189 (2005). ArticlePubMed Google Scholar
Pappo, J. & Ermak, T.H. Uptake and translocation of fluorescent latex particles by rabbit Peyer's patch follicle epithelium: a quantitative model for M cell uptake. Clin. Exp. Immunol.76, 144–148 (1989). CASPubMedPubMed Central Google Scholar
Garrett-Sinha, L.A. et al. PU.1 and Spi-B are required for normal B cell receptor-mediated signal transduction. Immunity10, 399–408 (1999). ArticleCASPubMed Google Scholar
McSorley, S.J., Asch, S., Costalonga, M., Reinhardt, R.L. & Jenkins, M.K. Tracking salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection. Immunity16, 365–377 (2002). ArticleCASPubMed Google Scholar
Salazar-Gonzalez, R.M. et al. CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer's patches. Immunity24, 623–632 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ray, D. et al. Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol. Cell. Biol.12, 4297–4304 (1992). ArticleCASPubMedPubMed Central Google Scholar
DeKoter, R.P. et al. Regulation of follicular B cell differentiation by the related E26 transformation-specific transcription factors PU.1, Spi-B, and Spi-C. J. Immunol.185, 7374–7384 (2010). ArticleCASPubMed Google Scholar
Schotte, R., Nagasawa, M., Weijer, K., Spits, H. & Blom, B. The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J. Exp. Med.200, 1503–1509 (2004). ArticleCASPubMedPubMed Central Google Scholar
Jedlicka, P. & Gutierrez-Hartmann, A. Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histol. Histopathol.23, 1417–1424 (2008). CASPubMedPubMed Central Google Scholar
Ng, A.Y.-N. et al. Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology122, 1455–1466 (2002). ArticleCASPubMed Google Scholar
Gregorieff, A. et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology137, 1333–1345 (2009). ArticleCASPubMed Google Scholar
Zhao, X. et al. CCL9 is secreted by the follicle-associated epithelium and recruits dome region Peyer's patch CD11b+ dendritic cells. J. Immunol.171, 2797–2803 (2003). ArticleCASPubMed Google Scholar
Bjerknes, M. & Cheng, H. Gastrointestinal stem cells. II. Intestinal stem cells. Am. J. Physiol. Gastrointest. Liver Physiol.289, G381–G387 (2005). ArticleCASPubMed Google Scholar
Gulig, P.A., Doyle, T.J., Hughes, J.A. & Matsui, H. Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect. Immun.66, 2471–2485 (1998). CASPubMedPubMed Central Google Scholar
Carter, P.B. & Collins, F.M. Experimental Yersinia enterocolitica infection in mice: kinetics of growth. Infect. Immun.9, 851–857 (1974). CASPubMedPubMed Central Google Scholar