Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow (original) (raw)
Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003). CASPubMed Google Scholar
Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003). CASPubMed Google Scholar
Arai, F. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell118, 149–161 (2004). CASPubMed Google Scholar
Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity25, 977–988 (2006). CASPubMed Google Scholar
Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell131, 324–336 (2007). CASPubMed Google Scholar
Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O. & Lapidot, T. Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell3, 484–492 (2008). CASPubMed Google Scholar
Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature466, 829–834 (2010). CASPubMedPubMed Central Google Scholar
Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity33, 387–399 (2010). CASPubMed Google Scholar
Yamazaki, S. et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell147, 1146–1158 (2011). CASPubMed Google Scholar
Ding, L., Saunders, T.L., Enikolopov, G. & Morrison, S.J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature481, 457–462 (2012). CASPubMedPubMed Central Google Scholar
Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005). CASPubMed Google Scholar
Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature474, 216–219 (2011). CASPubMedPubMed Central Google Scholar
Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med.208, 261–271 (2010). Google Scholar
Christopher, M.J., Rao, M., Liu, F., Woloszynek, J.R. & Link, D.C. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J. Exp. Med.208, 251–260 (2010). Google Scholar
Winkler, I.G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood116, 4815–4828 (2010). CASPubMed Google Scholar
Crofford, L.J. COX-1 and COX-2 tissue expression: implications and predictions. J. Rheumatol.24 (suppl. 49), 15–19 (1997). Google Scholar
Riese, J. et al. Transient expression of prostaglandin endoperoxide synthase-2 during mouse macrophage activation. J. Leukoc. Biol.55, 476–482 (1994). CASPubMed Google Scholar
Lorenz, M. et al. Cyclooxygenase-2 is essential for normal recovery from 5-fluorouracil-induced myelotoxicity in mice. Exp. Hematol.27, 1494–1502 (1999). CASPubMed Google Scholar
Hoggatt, J., Singh, P., Sampath, J. & Pelus, L.M. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood113, 5444–5455 (2009). CASPubMedPubMed Central Google Scholar
Goessling, W. et al. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell136, 1136–1147 (2009). CASPubMedPubMed Central Google Scholar
North, T.E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature447, 1007–1011 (2007). CASPubMedPubMed Central Google Scholar
Gentile, P.S. & Pelus, L.M. In vivo modulation of myelopoiesis by prostaglandin E2. IV. Prostaglandin E2 induction of myelopoietic inhibitory activity. J. Immunol.141, 2714–2720 (1988). CASPubMed Google Scholar
Pelus, L.M. Modulation of myelopoiesis by prostaglandin E2: demonstration of a novel mechanism of action in vivo. Immunol. Res.8, 176–184 (1989). CASPubMed Google Scholar
Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med.12, 446–451 (2006). CASPubMed Google Scholar
Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature431, 997–1002 (2004). CASPubMed Google Scholar
Tothova, Z. et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell128, 325–339 (2007). CASPubMed Google Scholar
Jang, Y.Y. & Sharkis, S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood110, 3056–3063 (2007). CASPubMedPubMed Central Google Scholar
Tesio, M. et al. Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood117, 419–428 (2011). CASPubMed Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000). CASPubMed Google Scholar
Magness, S.T., Bataller, R., Yang, L. & Brenner, D.A. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology40, 1151–1159 (2004). CASPubMed Google Scholar
Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol.20, 4106–4114 (2000). CASPubMedPubMed Central Google Scholar
Farina, C., Theil, D., Semlinger, B., Hohlfeld, R. & Meinl, E. Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int. Immunol.16, 799–809 (2004). CASPubMed Google Scholar
Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating Toll-like receptor ligands. Immunity34, 590–601 (2011). CASPubMedPubMed Central Google Scholar
Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science273, 242–245 (1996). CASPubMed Google Scholar
Yu, Y. et al. Genetic model of selective COX2 inhibition reveals novel heterodimer signaling. Nat. Med.12, 699–704 (2006). CASPubMed Google Scholar
Juntilla, M.M. et al. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood115, 4030–4038 (2010). CASPubMedPubMed Central Google Scholar
Lewandowski, D. et al. In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood115, 443–452 (2010). CASPubMed Google Scholar
Schajnovitz, A. et al. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat. Immunol.12, 391–398 (2011). CASPubMed Google Scholar
Dar, A., Kollet, O. & Lapidot, T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp. Hematol.34, 967–975 (2006). CASPubMed Google Scholar
Goichberg, P. et al. cAMP-induced PKCζ activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors. Blood107, 870–879 (2006). CASPubMed Google Scholar
Goessling, W. et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell8, 445–458 (2011). CASPubMedPubMed Central Google Scholar
Yokota, T. et al. Bone marrow lacks a transplantable progenitor for smooth muscle type alpha-actin-expressing cells. Stem Cells24, 13–22 (2006). PubMed Google Scholar
Huang, Y.L. et al. Thrombin induces nestin expression via the transactivation of EGFR signalings in rat vascular smooth muscle cells. Cell. Signal.21, 954–968 (2009). CASPubMed Google Scholar
Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev.15, 1406–1418 (2001). CASPubMedPubMed Central Google Scholar
Porter, R.L. & Calvi, L.M. in 52nd Annual Meeting of the American Society of HematologyVol. 116, 181–181 (Blood, Orlando, Florida, 2010). Google Scholar
Hoggatt, J. et al. in 52nd Annual Meeting of the American Society of HematologyVol. 116, 1088–1088 (Blood, Orlando, FL, 2010). Google Scholar
Golan, K. et al. S1P promotes murine progenitor cell egress and mobilization via S1P1 mediated ROS signaling and SDF-1 release. Blood119, 2478–2488 (2012). CASPubMedPubMed Central Google Scholar
Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol.3, 687–694 (2002). CASPubMed Google Scholar