Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells (original) (raw)
Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol.27, 485–517 (2009). CASPubMed Google Scholar
Kelly, M.N. et al. Interleukin-17interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun.73, 617–621 (2005). CASPubMedPubMed Central Google Scholar
Pitta, M.G. et al. IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J. Clin. Invest.119, 2379–2387 (2009). CASPubMedPubMed Central Google Scholar
Rudner, X.L., Happel, K.I., Young, E.A. & Shellito, J.E. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect. Immun.75, 3055–3061 (2007). CASPubMedPubMed Central Google Scholar
da Matta Guedes, P.M. et al. IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite-induced myocarditis. PLoS Negl. Trop. Dis.4, e604 (2010). PubMed Google Scholar
Miyazaki, Y. et al. IL-17 is necessary for host protection against acute-phase Trypanosoma cruzi infection. J. Immunol.185, 1150–1157 (2010). CASPubMed Google Scholar
Mou, Z., Jia, P., Kuriakose, S., Khadem, F. & Uzonna, J.E. Interleukin-17-mediated control of parasitemia in experimental Trypanosoma congolense infection in mice. Infect. Immun.78, 5271–5279 (2010). CASPubMedPubMed Central Google Scholar
Tosello Boari, J. et al. IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog.8, e1002658 (2012). PubMedPubMed Central Google Scholar
Cua, D.J. & Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol.10, 479–489 (2010). CASPubMed Google Scholar
Bryan, M.A., Guyach, S.E. & Norris, K.A. Specific humoral immunity versus polyclonal B cell activation in Trypanosoma cruzi infection of susceptible and resistant mice. PLoS Negl. Trop. Dis.4, e733 (2010). PubMedPubMed Central Google Scholar
Bermejo, D.A. et al. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies. Immunology132, 123–133 (2011). CASPubMedPubMed Central Google Scholar
Noelle, R.J., Ledbetter, J.A. & Aruffo, A. CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol. Today13, 431–433 (1992). CASPubMed Google Scholar
Meyer-Bahlburg, A. & Rawlings, D.J. Differential impact of Toll-like receptor signaling on distinct B cell subpopulations. Front. Biosci.17, 1499–1516 (2012). CASPubMed Central Google Scholar
Rawlings, D.J., Schwartz, M.A., Jackson, S.W. & Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol.12, 282–294 (2012). CASPubMedPubMed Central Google Scholar
Tarleton, R.L. Immune system recognition of Trypanosoma cruzi. Curr. Opin. Immunol.19, 430–434 (2007). CASPubMed Google Scholar
Minoprio, P., Bandeira, A., Pereira, P., Mota Santos, T. & Coutinho, A. Preferential expansion of Ly-1 B and CD4−CD8− T cells in the polyclonal lymphocyte responses to murine T. cruzi infection. Int. Immunol.1, 176–184 (1989). CASPubMed Google Scholar
Bermejo, D.A. et al. BAFF mediates splenic B cell response and antibody production in experimental Chagas disease. PLoS Negl. Trop. Dis.4, e679 (2010). PubMedPubMed Central Google Scholar
Schenkman, S., Eichinger, D., Pereira, M.E. & Nussenzweig, V. Structural and functional properties of Trypanosoma trans-sialidase. Annu. Rev. Microbiol.48, 499–523 (1994). CASPubMed Google Scholar
Gao, W., Wortis, H.H. & Pereira, M.A. The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. Int. Immunol.14, 299–308 (2002). CASPubMed Google Scholar
Alvarez, P., Leguizamon, M.S., Buscaglia, C.A., Pitcovsky, T.A. & Campetella, O. Multiple overlapping epitopes in the repetitive unit of the shed acute-phase antigen from Trypanosoma cruzi enhance its immunogenic properties. Infect. Immun.69, 7946–7949 (2001). CASPubMedPubMed Central Google Scholar
Risso, M.G., Pitcovsky, T.A., Caccuri, R.L., Campetella, O. & Leguizamon, M.S. Immune system pathogenesis is prevented by the neutralization of the systemic trans-sialidase from Trypanosoma cruzi during severe infections. Parasitology134, 503–510 (2007). CASPubMed Google Scholar
Leguizamón, M.S., Mocetti, E., Garcia Rivello, H., Argibay, P. & Campetella, O. Trans. -sialidase from Trypanosoma cruzi induces apoptosis in cells from the immune system in vivo. J. Infect. Dis.180, 1398–1402 (1999). PubMed Google Scholar
Buschiazzo, A. et al. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structurefunction studies towards the rational design of inhibitors. PLoS Pathog.8, e1002474 (2012). CASPubMedPubMed Central Google Scholar
Muiá, R.P. et al. Identification of glycoproteins targeted by Trypanosoma cruzi trans-sialidase, a virulence factor that disturbs lymphocyte glycosylation. Glycobiology20, 833–842 (2010). PubMedPubMed Central Google Scholar
Mucci, J., Risso, M.G., Leguizamon, M.S., Frasch, A.C. & Campetella, O. The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation. Cell. Microbiol.8, 1086–1095 (2006). CASPubMed Google Scholar
Kaneko, Y., Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science313, 670–673 (2006). CASPubMed Google Scholar
Kuijf, M.L. et al. TLR4-mediated sensing of Campylobacter jejuni by dendritic cells is determined by sialylation. J. Immunol.185, 748–755 (2010). CASPubMed Google Scholar
Rabinovich, G.A. & Toscano, M.A. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol.9, 338–352 (2009). CASPubMed Google Scholar
Earl, L.A. & Baum, L.G. CD45 glycosylation controls T-cell life and death. Immunol. Cell Biol.86, 608–615 (2008). CASPubMed Google Scholar
Zuñiga, E., Rabinovich, G.A., Iglesias, M.M. & Gruppi, A. Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J. Leukoc. Biol.70, 73–79 (2001). PubMed Google Scholar
Acosta-Rodríguez, E.V. et al. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J. Immunol.172, 493–502 (2004). PubMed Google Scholar
Gao, W. & Pereira, M.A. Trypanosoma cruzi trans-sialidase potentiates T cell activation through antigen-presenting cells: role of IL-6 and Bruton's tyrosine kinase. Eur. J. Immunol.31, 1503–1512 (2001). CASPubMed Google Scholar
Rawlings, D.J., Sommer, K. & Moreno-Garcia, M.E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat. Rev. Immunol.6, 799–812 (2006). CASPubMed Google Scholar
Dong, C. Genetic controls of Th17 cell differentiation and plasticity. Exp. Mol. Med.43, 1–6 (2011). CASPubMed Google Scholar
Esser, C., Rannug, A. & Stockinger, B. The aryl hydrocarbon receptor in immunity. Trends Immunol.30, 447–454 (2009). CASPubMed Google Scholar
Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORgammat+ cells. Science305, 248–251 (2004). CASPubMed Google Scholar
He, Y.W., Deftos, M.L., Ojala, E.W. & Bevan, M.J. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity9, 797–806 (1998). CASPubMedPubMed Central Google Scholar
Hermiston, M.L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol.21, 107–137 (2003). CASPubMed Google Scholar
Hernandez, J.D., Klein, J., Van Dyken, S.J., Marth, J.D. & Baum, L.G. T-cell activation results in microheterogeneous changes in glycosylation of CD45. Int. Immunol.19, 847–856 (2007). CASPubMed Google Scholar
Andrews, S.F. & Rawlings, D.J. Transitional B cells exhibit a B cell receptor-specific nuclear defect in gene transcription. J. Immunol.182, 2868–2878 (2009). CASPubMed Google Scholar
Rawlings, D.J. et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science271, 822–825 (1996). CASPubMed Google Scholar
Rawlings, D.J. Bruton's tyrosine kinase controls a sustained calcium signal essential for B lineage development and function. Clin. Immunol.91, 243–253 (1999). CASPubMed Google Scholar
Li, L. et al. IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest.120, 331–342 (2010). CASPubMed Google Scholar
Yu, H. et al. A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc.127, 17618–17619 (2005). CASPubMed Google Scholar
Cheng, J. et al. Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology18, 686–697 (2008). CASPubMedPubMed Central Google Scholar
Gut, H., King, S.J. & Walsh, M.A. Structural and functional studies of Streptococcus pneumoniae neuraminidase B: An intramolecular trans-sialidase. FEBS Lett.582, 3348–3352 (2008). CASPubMed Google Scholar
Cheng, J. et al. Trans. -sialidase activity of Photobacterium damsela α2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology20, 260–268 (2010). CASPubMed Google Scholar
Gutierrez, F.R., Guedes, P.M., Gazzinelli, R.T. & Silva, J.S. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol.31, 673–685 (2009). CASPubMed Google Scholar
Norris, K.A., Schrimpf, J.E. & Szabo, M.J. Identification of the gene family encoding the 160-kilodalton Trypanosoma cruzi complement regulatory protein. Infect. Immun.65, 349–357 (1997). CASPubMedPubMed Central Google Scholar
Campetella, O.E., Uttaro, A.D., Parodi, A.J. & Frasch, A.C. A recombinant Trypanosoma cruzi trans-sialidase lacking the amino acid repeats retains the enzymatic activity. Mol. Biochem. Parasitol.64, 337–340 (1994). CASPubMed Google Scholar
Solt, L.A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature472, 491–494 (2011). CASPubMedPubMed Central Google Scholar
Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408 (2001). CASPubMed Google Scholar