Role and species-specific expression of colon T cell homing receptor GPR15 in colitis (original) (raw)
Islam, S.A. & Luster, A.D. T cell homing to epithelial barriers in allergic disease. Nat. Med.18, 705–715 (2012). CASPubMed Google Scholar
Mora, J.R. & Von Andrian, U.H. Specificity and plasticity of memory lymphocyte migration. Curr. Top. Microbiol. Immunol.308, 83–116 (2006). CASPubMed Google Scholar
Zabel, B.A., Rott, A. & Butcher, E.C. Leukocyte chemoattractant receptors in human disease pathogenesis. Annu. Rev. Pathol. doi:10.1146/annurev-pathol-012513-104640 (2014).
Olson, T.S. & Ley, K. Chemokines and chemokine receptors in leukocyte trafficking. Am. J. Physiol. Regul. Integr. Comp. Physiol.283, R7–R28 (2002). CASPubMed Google Scholar
Kunkel, E.J. & Butcher, E.C. Chemokines and the tissue-specific migration of lymphocytes. Immunity16, 1–4 (2002). CASPubMed Google Scholar
Berlin, C. et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell74, 185–195 (1993). CASPubMed Google Scholar
Miura, S., Hokari, R. & Tsuzuki, Y. Mucosal immunity in gut and lymphoid cell trafficking. Ann. Vascular Dis.5, 275–281 (2012). Google Scholar
Wang, C., Kang, S.G., Lee, J., Sun, Z. & Kim, C.H. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol.2, 173–183 (2009). CASPubMedPubMed Central Google Scholar
Joost, P. & Methner, A. Phylogenetic analysis of 277 human G-protein-coupled receptors as a tool for the prediction of orphan receptor ligands. Genome Biol.3, 0063 (2002). Google Scholar
Deng, H.K., Unutmaz, D., KewalRamani, V.N. & Littman, D.R. Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature388, 296–300 (1997). CASPubMed Google Scholar
Kim, S.V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science340, 1456–1459 (2013). CASPubMedPubMed Central Google Scholar
Lee, A.Y. et al. Dendritic cells in colonic patches and iliac lymph nodes are essential in mucosal IgA induction following intrarectal administration via CCR7 interaction. Eur. J. Immunol.38, 1127–1137 (2008). CASPubMed Google Scholar
Kunkel, E.J., Campbell, D.J. & Butcher, E.C. Chemokines in lymphocyte trafficking and intestinal immunity. Microcirculation10, 313–323 (2003). CASPubMed Google Scholar
Mackay, C.R. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat. Immunol.9, 988–998 (2008). CASPubMed Google Scholar
Powrie, F., Leach, M.W., Mauze, S., Caddle, L.B. & Coffman, R.L. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol.5, 1461–1471 (1993). CASPubMed Google Scholar
Shigematsu, T., Specian, R.D., Wolf, R.E., Grisham, M.B. & Granger, D.N. MAdCAM mediates lymphocyte-endothelial cell adhesion in a murine model of chronic colitis. Am. J. Physiol. Gastrointest. Liver Physiol.281, G1309–G1315 (2001). CASPubMed Google Scholar
Picarella, D. et al. Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J. Immunol.158, 2099–2106 (1997). CASPubMed Google Scholar
Denning, T.L., Kim, G. & Kronenberg, M. Cutting edge: CD4+CD25+ regulatory T cells impaired for intestinal homing can prevent colitis. J. Immunol.174, 7487–7491 (2005). CASPubMed Google Scholar
Wang, C. et al. Effect of alpha4beta7 blockade on intestinal lymphocyte subsets and lymphoid tissue development. Inflamm. Bowel Dis.16, 1751–1762 (2010). PubMed Google Scholar
Soriano, A. et al. VCAM-1, but not ICAM-1 or MAdCAM-1, immunoblockade ameliorates DSS-induced colitis in mice. Lab. Invest.80, 1541–1551 (2000). CASPubMed Google Scholar
Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity1, 553–562 (1994). CASPubMed Google Scholar
Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest.116, 1310–1316 (2006). CASPubMedPubMed Central Google Scholar
Elson, C.O. et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology132, 2359–2370 (2007). CASPubMed Google Scholar
Fuss, I.J. et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol.157, 1261–1270 (1996). CASPubMed Google Scholar
Brand, S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut58, 1152–1167 (2009). CASPubMed Google Scholar
Ho, I.C., Tai, T.S. & Pai, S.Y. GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat. Rev. Immunol.9, 125–135 (2009). CASPubMedPubMed Central Google Scholar
Wang, Y., Su, M.A. & Wan, Y.Y. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity35, 337–348 (2011). CASPubMedPubMed Central Google Scholar
Wohlfert, E.A. et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Invest.121, 4503–4515 (2011). CASPubMedPubMed Central Google Scholar
Rudra, D. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat. Immunol.13, 1010–1019 (2012). CASPubMedPubMed Central Google Scholar
Kanhere, A. et al. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat. Commun.3, 1268 (2012). PubMed Google Scholar
Wei, G. et al. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity35, 299–311 (2011). CASPubMedPubMed Central Google Scholar
Marine, J. & Winoto, A. The human enhancer-binding protein Gata3 binds to several T-cell receptor regulatory elements. Proc. Natl. Acad. Sci. USA88, 7284–7288 (1991). CASPubMedPubMed Central Google Scholar
Arvey, A. et al. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat. Immunol.15, 580–587 (2014). CASPubMedPubMed Central Google Scholar
Lahl, K., Sweere, J., Pan, J. & Butcher, E. Orphan chemoattractant receptor GPR15 mediates dendritic epidermal T-cell recruitment to the skin. Eur. J. Immunol.44, 2577–2581 (2014). CASPubMedPubMed Central Google Scholar
Schneider, M.A., Meingassner, J.G., Lipp, M., Moore, H.D. & Rot, A. CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J. Exp. Med.204, 735–745 (2007). CASPubMedPubMed Central Google Scholar
Sydora, B.C. et al. beta7 Integrin expression is not required for the localization of T cells to the intestine and colitis pathogenesis. Clin. Exp. Immunol.129, 35–42 (2002). CASPubMedPubMed Central Google Scholar
Strober, W., Fuss, I.J. & Blumberg, R.S. The immunology of mucosal models of inflammation. Annu. Rev. Immunol.20, 495–549 (2002). CASPubMed Google Scholar
Strober, W. & Fuss, I.J. Experimental models of mucosal inflammation. Adv. Exp. Med. Biol.579, 55–97 (2006). CASPubMed Google Scholar
Heller, F. et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology129, 550–564 (2005). CASPubMed Google Scholar
Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol.14, 329–342 (2014). CASPubMed Google Scholar
Birzele, F. et al. Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in Human. Nucleic Acids Res.39, 7946–7960 (2011). CASPubMedPubMed Central Google Scholar
Samstein, R.M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell151, 153–166 (2012). CASPubMedPubMed Central Google Scholar
Villar, D., Flicek, P. & Odom, D.T. Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nat. Rev. Genet.15, 221–233 (2014). CASPubMedPubMed Central Google Scholar
Lefrancois, L. & Lycke, N. Isolation of mouse small intestinal intraepithelial lymphocytes, Peyer's patch, and lamina propria cells. Curr. Protoc. Immunol. Unit 3.19 (2001).
Zúñiga, L.A. et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J. Immunol.185, 6947–6959 (2010). PubMed Google Scholar
Habtezion, A., Toivola, D.M., Butcher, E.C. & Omary, M.B. Keratin-8-deficient mice develop chronic spontaneous Th2 colitis amenable to antibiotic treatment. J. Cell Sci.118, 1971–1980 (2005). CASPubMed Google Scholar
Chinen, T. et al. Prostaglandin E2 and SOCS1 have a role in intestinal immune tolerance. Nat. Commun.2, 190 (2011). PubMed Google Scholar
Fiocchi, C. & Youngman, K.R. Isolation of human intestinal mucosal mononuclear cells. Curr. Protoc. Immunol. Unit 7.30 (2001).
Rani, A. et al. IL-2 regulates expression of C-MAF in human CD4 T cells. J. Immunol.187, 3721–3729 (2011). CASPubMed Google Scholar
Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity30, 155–167 (2009). PubMedPubMed Central Google Scholar
Gökmen, M.R. et al. Genome-wide regulatory analysis reveals that T-bet controls Th17 lineage differentiation through direct suppression of IRF4. J. Immunol.191, 5925–5932 (2013). PubMed Google Scholar
Baekkevold, E.S. et al. A role for CCR4 in development of mature circulating cutaneous T helper memory cell populations. J. Exp. Med.201, 1045–1051 (2005). CASPubMedPubMed Central Google Scholar
Wirtz, S., Neufert, C., Weigmann, B. & Neurath, M.F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc.2, 541–546 (2007). CASPubMed Google Scholar
Fitch, F.W., Gajewski, T.F. & Hu-Li, J. Production of TH1 and TH2 cell lines and clones. Curr. Protoc. Immunol. Chapter 3, Unit 3.13. doi:10.1002/0471142735 (2006).
Pandiyan, P. et al. CD4+CD25+Foxp3+ regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity34, 422–434 (2011). CASPubMedPubMed Central Google Scholar
Fantini, M.C., Dominitzki, S., Rizzo, A., Neurath, M.F. & Becker, C. In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat. Protoc.2, 1789–1794 (2007). CASPubMed Google Scholar