Tolerogenic strategies to halt or prevent type 1 diabetes (original) (raw)
Egwuagu, C. E., Charukamnoetkanok, P. & Gery, I. Thymic expression of autoantigens correlates with resistance to autoimmune disease. J. Immunol.159, 3109–3131 (1997). CASPubMed Google Scholar
Hanahan, D. Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. Curr. Opin. Immunol.10, 656–662 (1998). ArticleCASPubMed Google Scholar
Parish, N. M., Rayner, D., Cooke, A. & Roitt, I. M. An investigation of the nature of induced suppression to experimental autoimmune thyroiditis. Immunology63, 199–203 (1988). CASPubMedPubMed Central Google Scholar
Bitar, D. M. & Whitacre, C. C. Suppression of experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell. Immunol.112, 364–370 (1988). ArticleCASPubMed Google Scholar
Heeger, P. S. et al. Revisiting tolerance induced by autoantigen in incomplete Freund's adjuvant. J. Immunol.164, 5771–5781 (2000). ArticleCASPubMed Google Scholar
al-Sabbagh, A., Miller, A., Santos, L. M. & Weiner, H. L. Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein- induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur. J. Immunol.24, 2104–2109 (1994). ArticleCASPubMed Google Scholar
Metzler, B. W. & Wraith, D.C. Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol.5, 1159–1165 (1993). ArticleCASPubMed Google Scholar
Burrows, G. G. et al. Regulation of encephalitogenic T cells with recombinant TCR ligands. J. Immunol.164, 6366–6371 (2000). ArticleCASPubMed Google Scholar
Salomon, B. & Bluestone, J. A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol.19, 225–252 (2001). ArticleCASPubMed Google Scholar
Kataoka, S. et al. Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes32, 247–253 (1983). ArticleCASPubMed Google Scholar
Nakhooda, A. F., Like, A. A., Chappel, C. I., Wei, C. N. & Marliss, E. B. The spontaneously diabetic Wistar rat (the “BB” rat). Studies prior to and during development of the overt syndrome. Diabetologia14, 199–207 (1978). ArticleCASPubMed Google Scholar
Todd, J. A. Genetics of type 1 diabetes. Pathol. Biol. Paris45, 219–227 (1997). CASPubMed Google Scholar
O'Reilly, L. A. et al. Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression. Eur. J. Immunol.21, 1171–1180 (1991). ArticleCASPubMed Google Scholar
Miyazaki, A. et al. Predominance of T lymphocytes in pancreatic islets and spleen of pre- diabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin. Exp. Immunol.60, 622–630 (1985). CASPubMedPubMed Central Google Scholar
Sibley, R. K., Sutherland, D. E., Goetz, F. & Michael, A. F. Recurrent diabetes mellitus in the pancreas iso- and allograft. A light and electron microscopic and immunohistochemical analysis of four cases. Lab. Invest.53, 132–144 (1985). CASPubMed Google Scholar
Campbell, I. L., Wong, G. H., Schrader, J. W. & Harrison, L. C. Interferon-γ enhances the expression of the major histocompatibility class I antigens on mouse pancreatic β cells. Diabetes34, 1205–1209 (1985). ArticleCASPubMed Google Scholar
Yang, X. D. et al. Effect of tumor necrosis factor α on insulin-dependent diabetes mellitus in NOD mice. 1. The early development of autoimmunity and the diabetogenic process. J. Exp. Med.180, 995–1004 (1994). ArticleCASPubMed Google Scholar
Mandrup-Poulsen, T. et al. Islet cytotoxicity of interleukin 1. Influence of culture conditions and islet donor characteristics. Diabetes36, 641–647 (1987). ArticleCASPubMed Google Scholar
Corbett, J. A., Sweetland, M. A., Lancaster, J. R. Jr & McDaniel, M. L. A 1-hour pulse with IL-1 β induces formation of nitric oxide and inhibits insulin secretion by rat islets of Langerhans: evidence for a tyrosine kinase signaling mechanism. FASEB J.7, 369–374 (1993). ArticleCASPubMed Google Scholar
Hutchings, P. & Cooke, A. Protection from insulin dependent diabetes mellitus afforded by insulin antigens in incomplete Freund's adjuvant depends on route of administration. J. Autoimmun.11, 127–130 (1998). ArticleCASPubMed Google Scholar
Tisch, R., Wang, B. & Serreze, D. V. Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol.163, 1178–1187 (1999). CASPubMed Google Scholar
Tian, J. et al. Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes-prone mice. Nature Med.2, 1348–1353 (1996). ArticleCASPubMed Google Scholar
Daniel, D. & Wegmann, D. R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc. Natl Acad. Sci. USA93, 956–960 (1996). ArticleCASPubMedPubMed Central Google Scholar
Atkinson, M. A., Maclaren, N. K. & Luchetta, R. Insulitis and diabetes in NOD mice reduced by prophylactic insulin therapy. Diabetes39, 933–937 (1990). ArticleCASPubMed Google Scholar
Tian, J. et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J. Exp. Med.183, 1561–1567 (1996). ArticleCASPubMed Google Scholar
Homann, D. et al. Autoreactive CD4+ T cells protect from autoimmune diabetes via bystander suppression using the IL-4/Stat6 pathway. Immunity11, 463–472 (1999). ArticleCASPubMed Google Scholar
Ehl, S. et al. Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J. Exp. Med.187, 763-774 (1998).
Maki, T., Ichikawa, T., Blanco, R. & Porter, J. Long-term abrogation of autoimmune diabetes in nonobese diabetic mice by immunotherapy with anti-lymphocyte serum. Proc. Natl Acad. Sci. USA89, 3434–3438 (1992). ArticleCASPubMedPubMed Central Google Scholar
Hutchings, P., O'Reilly, L., Parish, N. M., Waldmann, H. & Cooke, A. The use of a non-depleting anti-CD4 monoclonal antibody to re-establish tolerance to β cells in NOD mice. Eur. J. Immunol.22, 1913–1918 (1992). ArticleCASPubMed Google Scholar
Wang, B., Gonzalez, A., Benoist, C. & Mathis, D. The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur. J. Immunol.26, 1762–1769 (1996). ArticleCASPubMed Google Scholar
Parish, N. M., Bowie, L., Zusman Harach, S., Phillips, J. M. & Cooke, A. Thymus-dependent monoclonal antibody-induced protection from transferred diabetes. Eur. J. Immunol.28, 4362–4373 (1998). ArticleCASPubMed Google Scholar
Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA91, 123–127 (1994). ArticleCASPubMedPubMed Central Google Scholar
Boitard, C. et al. In vivo prevention of thyroid and pancreatic autoimmunity in the BB rat by antibody to class II major histocompatibility complex gene products. Proc. Natl Acad. Sci. USA82, 6627–6631 (1985). ArticleCASPubMedPubMed Central Google Scholar
Sempe, P. et al. Anti-α/β T cell receptor monoclonal antibody provides an efficient therapy for autoimmune diabetes in nonobese diabetic (NOD) mice. Eur. J. Immunol.21, 1163–1169 (1991). ArticleCASPubMed Google Scholar
Taki, T. et al. Prevention of cyclophosphamide-induced and spontaneous diabetes in NOD/Shi/Kbe mice by anti-MHC class I Kd monoclonal antibody. Diabetes40, 1203–1209 (1991). ArticleCASPubMed Google Scholar
Kuttler, B., Rosing, K., Lehmann, M., Brock, J. & Hahn, H. J. Prevention of autoimmune but not allogeneic destruction of grafted islets by different therapeutic strategies. J. Mol. Med.77, 226–229 (1999). ArticleCASPubMed Google Scholar
Arreaza, G. A. et al. Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL-4-dependent mechanism. J. Clin. Invest.100, 2243–2253 (1997). ArticleCASPubMedPubMed Central Google Scholar
Molano, R. D. et al. Prolonged islet graft survival in NOD mice by blockade of the CD40- CD154 pathway of T-cell costimulation. Diabetes50, 270–276 (2001). ArticleCASPubMed Google Scholar
Phillips, J. M. et al. Nondepleting anti-CD4 has an immediate action on diabetogenic effector cells, halting their destruction of pancreatic β cells. J. Immunol.165, 1949–1955 (2000). ArticleCASPubMed Google Scholar
Hutchings, P. et al. The regulation of autoimmunity through CD4+ T cells. Autoimmunity15, 21–23 (1993). ArticlePubMed Google Scholar
Guo, Z. et al. Immunotherapy with nondepleting anti-CD4 monoclonal antibodies but not CD28 antagonists protects islet graft in spontaneously diabetic nod mice from autoimmune destruction and allogeneic and xenogeneic graft rejection. Transplantation71, 1656–1665 (2001). ArticleCASPubMed Google Scholar
Chatenoud, L., Primo, J. & Bach, J. F. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J. Immunol.158, 2947–2954 (1997). CASPubMed Google Scholar
Chatenoud, L. et al. In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids. Transplantation49, 697–702 (1990). ArticleCASPubMed Google Scholar
Woodle, E. S. et al. Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3γ1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation68, 608–616 (1999). ArticleCASPubMed Google Scholar
Friend, P. J. et al. Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation68, 1632–1637 (1999). ArticleCASPubMed Google Scholar
Feldmann, M. & Maini, R. N. Anti-TNF-α therapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol.19, 163–196 (2001). ArticleCASPubMed Google Scholar
Harada, M., Kishimoto, Y. & Makino, S. Prevention of overt diabetes and insulitis in NOD mice by a single BCG vaccination. Diab. Res. Clin. Pract.8, 85–89 (1990). ArticleCAS Google Scholar
Martins, T. C. & Aguas, A. P. Mechanisms of Mycobacterium avium-induced resistance against insulin- dependent diabetes mellitus (IDDM) in non-obese diabetic (NOD) mice: role of Fas and Th1 cells. Clin. Exp. Immunol.115, 248–254 (1999). ArticleCASPubMedPubMed Central Google Scholar
Elias, D. et al. Vaccination against autoimmune mouse diabetes with a T-cell epitope of the human 65-kDa heat shock protein. Proc. Natl Acad. Sci. USA88, 3088–3091 (1991). ArticleCASPubMedPubMed Central Google Scholar
Quintana, F. J., Rotem, A., Carmi, P. & Cohen, I. R. Vaccination with empty plasmid DNA or CpG oligonucleotide inhibits diabetes in nonobese diabetic mice: modulation of spontaneous 60-kDa heat shock protein autoimmunity. J. Immunol.165, 6148–6155 (2000). ArticleCASPubMed Google Scholar
Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol.164, 558–561 (2000). ArticleCASPubMed Google Scholar
Vabulas, R. M. et al. Endocytosed heat shock protein 60s use TLR2 and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. Published online 11 June 2001 as 10.1074/jbc.M103217200.
Cooke, A. et al. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol.21, 169–176 (1999). ArticleCASPubMed Google Scholar
Banting, F. G. B. & Best, C. H. The internal secretion of the pancreas. J. Lab. Clin. Med.7, 465–480 (1922). Google Scholar
Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med.343, 230–238 (2000). ArticleCASPubMed Google Scholar
Soria, B., Skoudy, A. & Martin, F. From stem cells to β cells: new strategies in cell therapy of diabetes mellitus. Diabetologia44, 407–415 (2001). ArticleCASPubMed Google Scholar
Pictet, R. L. & Rutter, W. J. in Handbook of Physiology (eds. Steiner, D. & Freinkel, N.) 25–66 (Williams and Wilkins, Baltimore, MD, 1972). Google Scholar
Weir, G. C. & Bonner-Weir, S. Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J. Clin. Invest.85, 983–987 (1990). ArticleCASPubMedPubMed Central Google Scholar
Gu, D. & Sarvetnick, N. Epithelial cell proliferation and islet neogenesis in IFN-γ transgenic mice. Development118, 33–46 (1993). CASPubMed Google Scholar
Ramiya, V. K. et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nature Med.6, 278–282 (2000). ArticleCASPubMed Google Scholar
Bonner–Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl Acad. Sci. USA97, 7999–8004 (2000). ArticlePubMedPubMed Central Google Scholar
O'Reilly, L. A. et al. α-Cell neogenesis in an animal model of IDDM. Diabetes46, 599–606 (1997). ArticleCASPubMed Google Scholar
Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature371, 606–609 (1994). ArticleCASPubMed Google Scholar