Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells (original) (raw)
Porcelli, S.A. & Modlin, R.L. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol.17, 297–329 (1999). ArticleCAS Google Scholar
Beckman, E.M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature372, 691–694 (1994). ArticleCAS Google Scholar
Moody, D.B. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature404, 884–888 (2000). ArticleCAS Google Scholar
Porcelli, S., Morita, C.T. & Brenner, M.B. CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature360, 593–597 (1992). ArticleCAS Google Scholar
Sieling, P.A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science269, 227–230 (1995). ArticleCAS Google Scholar
Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol.29, 1667–1675 (1999). ArticleCAS Google Scholar
Shamshiev, A. et al. The αβ T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity13, 255–264 (2000). ArticleCAS Google Scholar
Shamshiev, A. et al. Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med.195, 1013–1021 (2002). ArticleCAS Google Scholar
Brossay, L. et al. Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells. J. Immunol.161, 5124–5128 (1998). CASPubMed Google Scholar
Brossay, L. et al. CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med.188, 1521–1528 (1998). ArticleCAS Google Scholar
Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol.161, 3271–3281 (1998). CASPubMed Google Scholar
Gumperz, J.E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity12, 211–221 (2000). ArticleCAS Google Scholar
Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science278, 1626–1629 (1997). ArticleCAS Google Scholar
Spada, F.M., Koezuka, Y. & Porcelli, S.A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med.188, 1529–1534 (1998). ArticleCAS Google Scholar
Zajonc, D.M., Elsliger, M.A., Teyton, L. & Wilson, I.A. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat. Immunol.4, 808–815 (2003). ArticleCAS Google Scholar
Gadola, S.D. et al. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol.3, 721–726 (2002). ArticleCAS Google Scholar
Moody, D.B. & Porcelli, S.A. Intracellular pathways of CD1 antigen presentation. Nat. Rev. Immunol.3, 11–22 (2003). ArticleCAS Google Scholar
Briken, V., Jackman, R.M., Watts, G.F., Rogers, R.A. & Porcelli, S.A. Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med.192, 281–288 (2000). ArticleCAS Google Scholar
Jackman, R.M. et al. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity8, 341–351 (1998). ArticleCAS Google Scholar
Sugita, M. et al. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science273, 349–352 (1996). ArticleCAS Google Scholar
Sugita, M., van Der Wel, N., Rogers, R.A., Peters, P.J. & Brenner, M.B. CD1c molecules broadly survey the endocytic system. Proc. Natl. Acad. Sci. USA97, 8445–8450 (2000). ArticleCAS Google Scholar
Roberts, T.J. et al. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J. Immunol.168, 5409–5414 (2002). ArticleCAS Google Scholar
Sugita, M. et al. Separate pathways for antigen presentation by CD1 molecules. Immunity11, 743–752 (1999). ArticleCAS Google Scholar
Chiu, Y.H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med.189, 103–110 (1999). ArticleCAS Google Scholar
Chiu, Y.H. et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat. Immunol.3, 55–60 (2002). ArticleCAS Google Scholar
Brossay, L. et al. Mouse CD1-autoreactive T cells have diverse patterns of reactivity to CD1+ targets. J. Immunol.160, 3681–3688 (1998). CASPubMed Google Scholar
Ernst, W.A. et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity8, 331–340 (1998). ArticleCAS Google Scholar
Moody, D.B., Reinhold, B.B., Reinhold, V.N., Besra, G.S. & Porcelli, S.A. Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunol. Lett.65, 85–91 (1999). ArticleCAS Google Scholar
Moody, D.B. et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat. Immunol.3, 435–442 (2002). ArticleCAS Google Scholar
Mukherjee, S., Soe, T.T. & Maxfield, F.R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol.144, 1271–1284 (1999). ArticleCAS Google Scholar
Sandhoff, K., Kolter, T. & Harzar, K. Sphingolipid activator proteins. In The Metabolic and Molecular Bases of Inherited Disease (eds. Scriver, C., Beaudet, A.L., Sly, W.S. & Valle, D.) 3371–3388 (McGraw-Hill, New York, 2001). Google Scholar
Fujita, N. et al. Targeted disruption of the mouse sphingolipid activator protein gene: a complex phenotype, including severe leukodystrophy and wide-spread storage of multiple sphingolipids. Hum. Mol. Genet.5, 711–725 (1996). ArticleCAS Google Scholar
Exley, M., Garcia, J., Balk, S.P. & Porcelli, S. Requirements for CD1d recognition by human invariant Vα24+ CD4-CD8-T cells. J. Exp. Med.186, 109–120 (1997). ArticleCAS Google Scholar
Burkhardt, J.K. et al. Accumulation of sphingolipids in SAP-precursor (prosaposin)-deficient fibroblasts occurs as intralysosomal membrane structures and can be completely reversed by treatment with human SAP-precursor. Eur. J. Cell Biol.73, 10–18 (1997). CASPubMed Google Scholar
Avva, R.R. & Cresswell, P. In vivo and in vitro formation and dissociation of HLA-DR complexes with invariant chain-derived peptides. Immunity1, 763–774 (1994). ArticleCAS Google Scholar
Fischer, G. & Jatzkewitz, H. The activator of cerebroside sulphatase. Binding studies with enzyme and substrate demonstrating the detergent function of the activator protein. Biochim. Biophys. Acta481, 561–572 (1977). ArticleCAS Google Scholar
Li, S.C., Sonnino, S., Tettamanti, G. & Li, Y.T. Characterization of a nonspecific activator protein for the enzymatic hydrolysis of glycolipids. J. Biol. Chem.263, 6588–6591 (1988). CASPubMed Google Scholar
Vogel, A., Schwarzmann, G. & Sandhoff, K. Glycosphingolipid specificity of the human sulfatide activator protein. Eur. J. Biochem.200, 591–597 (1991). ArticleCAS Google Scholar
Hiraiwa, M., Soeda, S., Kishimoto, Y. & O'Brien, J.S. Binding and transport of gangliosides by prosaposin. Proc. Natl. Acad. Sci. USA89, 11254–11258 (1992). ArticleCAS Google Scholar
Morimoto, S. et al. Interaction of saposins, acidic lipids, and glucosylceramidase. J. Biol. Chem.265, 1933–1937 (1990). CASPubMed Google Scholar
Vaccaro, A.M. et al. pH-dependent conformational properties of saposins and their interactions with phospholipid membranes. J. Biol. Chem.270, 30576–30580 (1995). ArticleCAS Google Scholar
Vaccaro, A.M. et al. Effect of saposins A and C on the enzymatic hydrolysis of liposomal glucosylceramide. J. Biol. Chem.272, 16862–16867 (1997). ArticleCAS Google Scholar
Wilkening, G., Linke, T. & Sandhoff, K. Lysosomal degradation on vesicular membrane surfaces. Enhanced glucosylceramide degradation by lysosomal anionic lipids and activators. J. Biol. Chem.273, 30271–30278 (1998). ArticleCAS Google Scholar
Ciaffoni, F. et al. Saposin D solubilizes anionic phospholipid-containing membranes. J. Biol. Chem.276, 31583–31589 (2001). ArticleCAS Google Scholar
Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature392, 193–197 (1998). ArticleCAS Google Scholar
Joyce, S. et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science279, 1541–1544 (1998). ArticleCAS Google Scholar
De Silva, A.D. et al. Lipid protein interactions: the assembly of CD1d1 with cellular phospholipids occurs in the endoplasmic reticulum. J. Immunol.168, 723–733 (2002). Article Google Scholar
Kang, S.J. & Cresswell, P. Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J. Biol. Chem.277, 44838–44844 (2002). ArticleCAS Google Scholar
Kang, S.J. & Cresswell, P. Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. Embo. J.21, 1650–1660 (2002). ArticleCAS Google Scholar
Turvy, D.N. & Blum, J.S. Detection of biotinylated cell surface receptors and MHC molecules in a capture ELISA: a rapid assay to measure endocytosis. J. Immunol. Methods212, 9–18 (1998). ArticleCAS Google Scholar