Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway (original) (raw)

References

  1. Welch, W.J., Ramsey, B.W., Accurso, F.J. & Cutting, G.R. in Metabolic and Molecular Bases of Inherited Disease (eds. Scriver, C.R. et al.) 521–588 (McGraw-Hill, New York, 2001).
    Google Scholar
  2. Verkman, A.S., Song, Y. & Thiagarajah, J.R. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am. J. Physiol. Cell Physiol. 284, C2–C15 (2003).
    Article CAS Google Scholar
  3. Khan, T.Z. et al. Early pulmonary inflammation in infants with cystic fibrosis. Am. J. Respir. Crit. Care Med. 151, 1075–1082 (1995).
    CAS PubMed Google Scholar
  4. Bonfield, T.L. et al. Inflammatory cytokines in cystic fibrosis lungs. Am. J. Respir. Crit. Care Med. 152, 2111–2118 (1995).
    Article CAS Google Scholar
  5. Muhlebach, M.S., Stewart, P.W., Leigh, M.W. & Noah, T.L. Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am. J. Respir. Crit. Care Med. 160, 186–191 (1999).
    Article CAS Google Scholar
  6. Noah, T.L., Black, H.R., Cheng, P.W., Wood, R.E. & Leigh, M.W. Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J. Infect. Dis. 175, 638–647 (1997).
    Article CAS Google Scholar
  7. Tirouvanziam, R. et al. Inflammation and infection in naive human cystic fibrosis airway grafts. Am. J. Respir. Cell Mol. Biol. 23, 121–127 (2000).
    Article CAS Google Scholar
  8. Muhlebach, M.S. & Noah, T.L. Endotoxin activity and inflammatory markers in the airways of young patients with cystic fibrosis. Am. J. Respir. Crit. Care Med. 165, 911–915 (2002).
    Article Google Scholar
  9. Konstan, M.W., Walenga, R.W., Hilliard, K.A. & Hilliard, J.B. Leukotriene B4 markedly elevated in the epithelial lining fluid of patients with cystic fibrosis. Am. Rev. Respir. Dis. 148, 896–901 (1993).
    Article CAS Google Scholar
  10. McElvaney, N.G. et al. Aerosol α1-antitrypsin treatment for cystic fibrosis. Lancet 337, 392–394 (1991).
    Article CAS Google Scholar
  11. Rosenberg, H.F. & Gallin, J.I. in Fundamental Immunology 4th edn. (ed. Paul, W.E.) 1051–1066 (Lippincott-Raven, Philadelphia, 1999).
    Google Scholar
  12. Serhan, C.N. Lipoxins and aspirin-triggered 15-epi-lipoxin biosynthesis: an update and role in anti-inflammation and pro-resolution. Prostaglandins Other Lipid Mediat. 69, 433–455 (2002).
    Article Google Scholar
  13. Fierro, I.M. & Serhan, C.N. Mechanisms in anti-inflammation and resolution: the role of lipoxins and aspirin-triggered lipoxins. Braz. J. Med. Biol. Res. 34, 555–566 (2001).
    Article CAS Google Scholar
  14. Gewirtz, A.T. et al. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J. Clin. Invest. 101, 1860–1869 (1998).
    Article CAS Google Scholar
  15. Clish, C.B. et al. Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo . Proc. Natl. Acad. Sci. USA 96, 8247–8252 (1999).
    Article CAS Google Scholar
  16. van Heeckeren, A.M. & Schluchter, M.D. Murine models of chronic Pseudomonas aeruginosa lung infection. Lab Anim. 36, 291–312 (2002).
    Article CAS Google Scholar
  17. Costerton, J.W. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 9, 50–52 (2001).
    Article CAS Google Scholar
  18. Stotland, P.K., Radzioch, D. & Stevenson, M.M. Mouse models of chronic lung infection with Pseudomonas aeruginosa: models for the study of cystic fibrosis. Pediatr. Pulmonol. 30, 413–424 (2000).
    Article CAS Google Scholar
  19. Bonnans, C. et al. Lipoxins are potential endogenous antiinflammatory mediators in asthma. Am. J. Respir. Crit. Care Med. 165, 1531–1535 (2002).
    Article Google Scholar
  20. Sanak, M. et al. Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. Eur. Respir. J. 16, 44–49 (2000).
    Article CAS Google Scholar
  21. Hopen, U.E., Lu, B., Gerard, N.P. & Gerard, C. The C5a chemoattractant receptor mediates mucosal defense to infection. Nature 383, 25–26 (1996).
    Article Google Scholar
  22. Bonnans, C., Mainprice, B., Chanez, P., Bousquet, J. & Urbach, V. Lipoxin A4 stimulates a cytosolic Ca2+ increase in human bronchial epithelium. J. Biol. Chem. 278, 10879–10884 (2003).
    Article CAS Google Scholar
  23. Pilewski, J.M. & Frizzell, R.A. Role of CFTR in airway disease. Physiol. Rev. 79, S215–S255 (1999).
    Article CAS Google Scholar
  24. Serhan, C.N., Levy, B.D., Clish, C.B., Gronert, K. & Chiang, N. Lipoxins, aspirin triggered 15-epi-lipoxin stable analogs and their receptors in anti-inflammation: a window for therapeutic opportunity. Ernst Schering Res. Found. Workshop 31, 143–185 (2000).
    CAS Google Scholar
  25. Levy, B.D., Clish, C.B., Schmidt, B., Gronert, K. & Serhan, C.N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).
    Article CAS Google Scholar
  26. Xu, Y. et al. Transcriptional adaptation to cystic fibrosis transmembrane conductance regulator deficiency. J. Biol. Chem. 278, 7674–7682 (2003).
    Article CAS Google Scholar
  27. Hong, S., Gronert, K., Devchand, P.R., Moussignac, R.L. & Serhan, C.N. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 278, 14677–14687 (2003).
    Article CAS Google Scholar
  28. Serhan, C.N. et al. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000).
    Article CAS Google Scholar
  29. Serhan, C.N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2002).
    Article CAS Google Scholar
  30. Freedman, S.D., Shea, J.C., Blanco, P.G. & Alvarez, J.G. Fatty acids in cystic fibrosis. Curr. Opin. Pulm. Med. 6, 530–532 (2000).
    Article CAS Google Scholar
  31. Freedman, S.D. et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N. Engl. J. Med. 350, 560–569 (2004).
    Article CAS Google Scholar
  32. Gronert, K., Gewirtz, A., Madara, J.L. & Serhan, C.N. Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon γ and inhibits tumor necrosis factor α-induced IL-8 release. J. Exp. Med. 187, 1285–1294 (1998).
    Article CAS Google Scholar
  33. Gronert, K., Martinsson-Niskanen, T., Ravasi, S., Chiang, N. & Serhan, C.N. Selectivity of recombinant human leukotriene D4, leukotriene B4, and lipoxin A4 receptors with aspirin-triggered 15-epi-LXA4 and regulation of vascular and inflammatory responses. Am. J. Pathol. 158, 3–9 (2001).
    Article CAS Google Scholar
  34. Sarau, H.M. et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol. Pharmacol. 56, 657–663 (1999).
    Article CAS Google Scholar
  35. Lynch, K.R. et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399, 789–793 (1999).
    Article CAS Google Scholar
  36. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).
    Article CAS Google Scholar
  37. Gewirtz, A.T. et al. Lipoxin A4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J. Immunol. 168, 5260–5267 (2002).
    Article CAS Google Scholar
  38. Andrews, P.C. & Krinsky, N.L. Quantitative determination of myeloperoxidase using tetramethylbenzidine as substrate. Anal. Biochem. 127, 346–350 (1982).
    Article CAS Google Scholar

Download references