Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island (original) (raw)
Parsonnet, J. Helicobacter pylori: the size of the problem. Gut43, S6–S9 (1998). Article Google Scholar
Censini, S. et al. cag, a pathogenicity island of Helicobacter pylori, encodes type Ispecific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA93, 14648–14653 (1996). ArticleCAS Google Scholar
Blaser, M.J. et al. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res.55, 2111–2115 (1995). CASPubMed Google Scholar
Peek, R.M. Jr . et al. Heightened inflammatory response and cytokine expression in vivo to cagA+Helicobacter pylori strains. Lab. Invest.73, 760–770 (1995). CASPubMed Google Scholar
Fischer, W. et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol.42, 1337–1348 (2001). ArticleCAS Google Scholar
Covacci, A. & Rappuoli, R. Helicobacter pylori: molecular evolution of a bacterial quasispecies. Curr. Opin. Microbiol.1, 96–102 (1998). ArticleCAS Google Scholar
Cascales, E. & Christie, P.J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol.1, 137–149 (2003). ArticleCAS Google Scholar
Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science287, 1497–1500 (2000). ArticleCAS Google Scholar
Selbach, M. et al. The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J.22, 515–528 (2003). ArticleCAS Google Scholar
Backhed, F. & Hornef, M. Toll-like receptor 4-mediated signaling by epithelial surfaces: necessity or threat? Microbes Infect.5, 951–959 (2003). ArticleCAS Google Scholar
Bäckhed, F. et al. Gastric mucosal recognition of Helicobacter pylori is independent of Toll-like receptor 4. J. Infect. Dis.187, 829–836 (2003). Article Google Scholar
Maeda, S. et al. Distinct mechanism of _Helicobacter pylori_-mediated NF-κB activation between gastric cancer cells and monocytic cells. J. Biol. Chem.276, 44856–44864 (2001). ArticleCAS Google Scholar
Smith, M.F., Jr. et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for _Helicobacter pylori_-induced NF-kappa B activation and chemokine expression by epithelial cells. J. Biol. Chem.278, 32552–32560 (2003). ArticleCAS Google Scholar
Lee, S.K. et al. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect.5, 1345–1356 (2003). ArticleCAS Google Scholar
Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol.4, 702–707 (2003). ArticleCAS Google Scholar
Girardin, S.E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science300, 1584–1587 (2003). ArticleCAS Google Scholar
Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem.278, 8869–8872 (2003). ArticleCAS Google Scholar
Girardin, S.E. et al. CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep.2, 736–742 (2001). ArticleCAS Google Scholar
Philpott, D.J. et al. Reduced activation of inflammatory responses in host cells by mouseadapted Helicobacter pylori isolates. Cell. Microbiol.4, 285–296 (2002). ArticleCAS Google Scholar
Bertin, J. et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J. Biol. Chem.274, 12955–12958 (1999). ArticleCAS Google Scholar
Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem.274, 14560–14567 (1999). ArticleCAS Google Scholar
Tomb, J.F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature388, 539–547 (1997). ArticleCAS Google Scholar
Odenbreit, S., Kavermann, H., Puls, J. & Haas, R. CagA tyrosine phosphorylation and interleukin-8 induction by Helicobacter pylori are independent from alpAB, HopZ and bab group outer membrane proteins. Int. J. Med. Microbiol.292, 257–266 (2002). ArticleCAS Google Scholar
Petersen, A.M. & Krogfelt, K.A. Helicobacter pylori: an invading microorganism? A review. FEMS Immunol. Med. Microbiol.36, 117–126 (2003). ArticleCAS Google Scholar
Amieva, M.R., Salama, N.R., Tompkins, L.S. & Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol.4, 677–690 (2002). ArticleCAS Google Scholar
Israel, D.A. et al. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J. Clin. Invest.107, 611–620 (2001). ArticleCAS Google Scholar
Fox, J.G. et al. Host and microbial constituents influence _Helicobacter pylori_-induced cancer in a murine model of hypergastrinemia. Gastroenterology124, 1879–1890 (2003). Article Google Scholar
Sakagami, T. et al. Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis. Gut39, 639–648 (1996). ArticleCAS Google Scholar
Remick, D.G. et al. CXC chemokine redundancy ensures local neutrophil recruitment during acute inflammation. Am. J. Pathol.159, 1149–1157 (2001). ArticleCAS Google Scholar
Widmer, U., Manogue, K.R., Cerami, A. & Sherry, B. Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J. Immunol.150, 4996–5012 (1993). CASPubMed Google Scholar
Kim, J.G., Lee, S.J. & Kagnoff, M.F. Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect. Immun.72, 1487–1495 (2004). ArticleCAS Google Scholar
Gewirtz, A.T. et al. Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. J. Infect. Dis.189, 1914–1920 (2004). ArticleCAS Google Scholar
Garhart, C.A., Heinzel, F.P., Czinn, S.J. & Nedrud, J.G. Vaccine-induced reduction of Helicobacter pylori colonization in mice is interleukin-12 dependent but gamma interferon and inducible nitric oxide synthase independent. Infect. Immun.71, 910–921 (2003). ArticleCAS Google Scholar
Kim, D.S., Han, J.H. & Kwon, H.J. NF-kappaB and c-Jun-dependent regulation of macrophage inflammatory protein-2 gene expression in response to lipopolysaccharide in RAW 264.7 cells. Mol. Immunol.40, 633–643 (2003). ArticleCAS Google Scholar
Wang, D. & Baldwin, A.S., Jr. Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem.273, 29411–29416 (1998). ArticleCAS Google Scholar
Saccani, S., Pantano, S. & Natoli, G. Modulation of NF-kappaB activity by exchange of dimers. Mol. Cell11, 1563–1574 (2003). ArticleCAS Google Scholar
Aras, R.A. et al. Plasticity of repetitive DNA sequences within a bacterial (Type IV) secretion system component. J. Exp. Med.198, 1349–1360 (2003). ArticleCAS Google Scholar
Backert, S. et al. Functional analysis of the cag pathogenicity island in Helicobacter pylori isolates from patients with gastritis, peptic ulcer, and gastric cancer. Infect. Immun.72, 1043–1056 (2004). ArticleCAS Google Scholar
Rohde, M., Puls, J., Buhrdorf, R., Fischer, W. & Haas, R. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol. Microbiol.49, 219–234 (2003). ArticleCAS Google Scholar
Ferrero, R.L., Thiberge, J.-M., Huerre, M. & Labigne, A. Immune responses of specific pathogen-free mice to chronic Helicobacter pylori (strain SS1) infection. Infect. Immun.66, 1349–1355 (1998). CASPubMedPubMed Central Google Scholar
Chevalier, C., Thiberge, J-M., Ferrero, R.L. & Labigne, A. Essential role of Helicobacter pylori γ-glutamyltranspeptidase for the colonization of the gastric mucosa of mice. Mol. Microbiol.31, 1359–1372 (1999). ArticleCAS Google Scholar
Skouloubris, S., Thiberge, J.M., Labigne, A. & De Reuse, H. The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect. Immun.66, 4517–4521 (1998). CASPubMedPubMed Central Google Scholar
Heuermann, D. & Haas, R. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol. Gen. Genet.257, 519–528 (1998). ArticleCAS Google Scholar
Moran, A.P., Helander, I.M. & Kosunen, T.U. Compositional analysis of Helicobacter pylori rough-form lipopolysaccharides. J. Bacteriol.174, 1370–1377 (1992). ArticleCAS Google Scholar
Glauner, B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal. Biochem.172, 451–464 (1988). ArticleCAS Google Scholar
Laniece, P. et al. A new high resolution radioimager for the quantitative analysis of radiolabelled molecules in tissue section. J. Neurosci. Methods86, 1–5 (1998). ArticleCAS Google Scholar
Ferrero, R.L. et al. The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc. Natl. Acad. Sci. USA92, 6499–6503 (1995). ArticleCAS Google Scholar
Athman, R., Niewöhner, J., Louvard, D. & Robine, S. Epithelial cells: Establishment of primary cultures and immortalization. in Methods in Microbiology Vol. 31 (eds. Sansonetti, P.J. & Zychlinsky, A.) 96–113 (Academic Press, San Diego, 2002). Google Scholar
Akopyants, N.S. et al. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol. Microbiol.28, 37–53 (1998). ArticleCAS Google Scholar
Salama, N. et al. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA97, 14668–14673 (2000). ArticleCAS Google Scholar