Early hematopoietic lineage restrictions directed by Ikaros (original) (raw)
Morrison, S.J., Uchida, N. & Weissman, I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol.11, 35–71 (1995). ArticleCAS Google Scholar
Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol.21, 759–806 (2003). ArticleCAS Google Scholar
Lemischka, I.R. Clonal, in vivo behavior of the totipotent hematopoietic stem cell. Semin. Immunol.3, 349–355 (1991). CASPubMed Google Scholar
Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell91, 661–672 (1997). ArticleCAS Google Scholar
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature404, 193–197 (2000). ArticleCAS Google Scholar
Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science241, 58–62 (1988). ArticleCAS Google Scholar
Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity1, 661–673 (1994). ArticleCAS Google Scholar
Weissman, I.L., Anderson, D.J. & Gage, F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu. Rev. Cell Dev. Biol.17, 387–403 (2001). ArticleCAS Google Scholar
Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow Lin− Sca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity15, 659–669 (2001). ArticleCAS Google Scholar
Christensen, J.L. & Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA98, 14541–14546 (2001). ArticleCAS Google Scholar
Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science273, 242–245 (1996). ArticleCAS Google Scholar
Yang, L. et al. Identification of Lin− Sca1+c-kit+CD34+Flt3− short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood105, 2717–2723 (2005). ArticleCAS Google Scholar
Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity17, 117–130 (2002). ArticleCAS Google Scholar
Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol.4, 168–174 (2003). ArticleCAS Google Scholar
Schwarz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol.5, 953–960 (2004). ArticleCAS Google Scholar
Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell121, 295–306 (2005). ArticleCAS Google Scholar
Lessard, J., Faubert, A. & Sauvageau, G. Genetic programs regulating HSC specification, maintenance and expansion. Oncogene23, 7199–7209 (2004). ArticleCAS Google Scholar
Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol.22, 55–79 (2004). ArticleCAS Google Scholar
Rothenberg, E.V. & Taghon, T. Molecular genetics of T cell development. Annu. Rev. Immunol.23, 601–649 (2005). ArticleCAS Google Scholar
Friedman, A.D. Transcriptional regulation of granulocyte and monocyte development. Oncogene21, 3377–3390 (2002). ArticleCAS Google Scholar
Cantor, A.B. & Orkin, S.H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene21, 3368–3376 (2002). ArticleCAS Google Scholar
Georgopoulos, K., Moore, D.D. & Derfler, B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science258, 808–812 (1992). ArticleCAS Google Scholar
Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell79, 143–156 (1994). ArticleCAS Google Scholar
Wang, J.H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity5, 537–549 (1996). ArticleCAS Google Scholar
Winandy, S., Wu, P. & Georgopoulos, K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell83, 289–299 (1995). ArticleCAS Google Scholar
Hahm, K. et al. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Biol.14, 7111–7123 (1994). ArticleCAS Google Scholar
Nichogiannopoulou, A., Trevisan, M., Neben, S., Friedrich, C. & Georgopoulos, K. Defects in hemopoietic stem cell activity in Ikaros mutant mice. J. Exp. Med.190, 1201–1214 (1999). ArticleCAS Google Scholar
Mackarehtschian, K. et al. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity3, 147–161 (1995). ArticleCAS Google Scholar
Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity17, 463–472 (2002). ArticleCAS Google Scholar
Kim, J. et al. Ikaros DNA-binding proteins direct formation of chromatin remodeling complexes in lymphocytes. Immunity10, 345–355 (1999). ArticleCAS Google Scholar
O'Neill, D.W. et al. An Ikaros-containing chromatin-remodeling complex in adult-type erythroid cells. Mol. Cell. Biol.20, 7572–7582 (2000). ArticleCAS Google Scholar
Harker, N. et al. The _CD8_α gene locus is regulated by the Ikaros family of proteins. Mol. Cell10, 1403–1415 (2002). ArticleCAS Google Scholar
Kaufmann, C. et al. A complex network of regulatory elements in Ikaros and their activity during hemo-lymphopoiesis. EMBO J.22, 2211–2223 (2003). ArticleCAS Google Scholar
Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell3, 137–147 (2002). ArticleCAS Google Scholar
Akashi, K. et al. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood101, 383–389 (2003). ArticleCAS Google Scholar
Metcalf, D., Johnson, G.R. & Mandel, T.E. Colony formation in agar by multipotential hemopoietic cells. J. Cell. Physiol.98, 401–420 (1979). ArticleCAS Google Scholar
Nakahata, T. & Ogawa, M. Clonal origin of murine hemopoietic colonies with apparent restriction to granuclocyte-macrophage-megakaryocyte (GMM) differentiation. J. Cell. Physiol.111, 239–246 (1982). ArticleCAS Google Scholar
Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity17, 749–756 (2002). ArticleCAS Google Scholar
Phillips, R.L. et al. The genetic program of hematopoietic stem cells. Science288, 1635–1640 (2000). ArticleCAS Google Scholar
D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med.198, 293–303 (2003). ArticleCAS Google Scholar
Martin, C.H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat. Immunol.4, 866–873 (2003). ArticleCAS Google Scholar
Terszowski, G. et al. Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E). Blood105, 1937–1945 (2005). ArticleCAS Google Scholar
Lopez, R.A., Schoetz, S., DeAngelis, K., O'Neill, D. & Bank, A. Multiple hematopoietic defects and delayed globin switching in Ikaros null mice. Proc. Natl. Acad. Sci. USA99, 602–607 (2002). ArticleCAS Google Scholar