Regulatory T cell development in the absence of functional Foxp3 (original) (raw)
References
Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol.22, 531–562 (2004). ArticleCAS Google Scholar
Fontenot, J.D. & Rudensky, A.Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol.6, 331–337 (2005). ArticleCAS Google Scholar
Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol.3, 756–763 (2002). ArticleCAS Google Scholar
Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol.2, 301–306 (2001). ArticleCAS Google Scholar
Bensinger, S.J., Bandeira, A., Jordan, M.S., Caton, A.J. & Laufer, T.M. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J. Exp. Med.194, 427–438 (2001). ArticleCAS Google Scholar
Cabarrocas, J. et al. Foxp3+ CD25+ regulatory T cells specific for a neo-self-antigen develop at the double-positive thymic stage. Proc. Natl. Acad. Sci. USA103, 8453–8458 (2006). ArticleCAS Google Scholar
Hsieh, C.S., Zheng, Y., Liang, Y., Fontenot, J.D. & Rudensky, A.Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol.7, 401–410 (2006). ArticleCAS Google Scholar
Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity25, 249–259 (2006). ArticleCAS Google Scholar
Lyon, M.F., Peters, J., Glenister, P.H., Ball, S. & Wright, E. The scurfy mouse mutant has previously unrecognized hematological abnormalities and resembles Wiskott-Aldrich syndrome. Proc. Natl. Acad. Sci. USA87, 2433–2437 (1990). ArticleCAS Google Scholar
Godfrey, V.L., Wilkinson, J.E. & Russell, L.B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol.138, 1379–1387 (1991). CASPubMedPubMed Central Google Scholar
Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4, 330–336 (2003). ArticleCAS Google Scholar
Lin, W. et al. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J. Allergy Clin. Immunol.116, 1106–1115 (2005). ArticleCAS Google Scholar
Chatila, T.A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest.106, R75–R81 (2000). ArticleCAS Google Scholar
Wildin, R.S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet.27, 18–20 (2001). ArticleCAS Google Scholar
Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet.27, 20–21 (2001). ArticleCAS Google Scholar
Kawahata, K. et al. Generation of CD4+CD25+ regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J. Immunol.168, 4399–4405 (2002). ArticleCAS Google Scholar
Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science299, 1057–1061 (2003). ArticleCAS Google Scholar
van Santen, H.M., Benoist, C. & Mathis, D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J. Exp. Med.200, 1221–1230 (2004). ArticleCAS Google Scholar
Gavin, M.A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA103, 6659–6664 (2006). ArticleCAS Google Scholar
Taguchi, O. & Takahashi, T. Administration of anti-interleukin-2 receptor α antibody in vivo induces localized autoimmune disease. Eur. J. Immunol.26, 1608–1612 (1996). ArticleCAS Google Scholar
McHugh, R.S. & Shevach, E.M. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease. J. Immunol.168, 5979–5983 (2002). ArticleCAS Google Scholar
Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell126, 375–387 (2006). ArticleCAS Google Scholar
Stroud, J.C. et al. Structure of the forkhead domain of FOXP2 bound to DNA. Structure14, 159–166 (2006). ArticleCAS Google Scholar
Lopes, J.E. et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol.177, 3133–3142 (2006). ArticleCAS Google Scholar
Haribhai, D. et al. Regulatory T cells dynamically control the primary immune response to foreign antigen. J. Immunol. (in the press).
Bendelac, A., Matzinger, P., Seder, R.A., Paul, W.E. & Schwartz, R.H. Activation events during thymic selection. J. Exp. Med.175, 731–742 (1992). ArticleCAS Google Scholar
Feng, C. et al. A potential role for CD69 in thymocyte emigration. Int. Immunol.14, 535–544 (2002). ArticleCAS Google Scholar
Liu, W. et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med.203, 1701–1711 (2006). ArticleCAS Google Scholar
Seddiki, N. et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med.203, 1693–1700 (2006). ArticleCAS Google Scholar
Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med.199, 303–313 (2004). ArticleCAS Google Scholar
Izcue, A., Coombes, J.L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev.212, 256–271 (2006). ArticleCAS Google Scholar
Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity22, 329–341 (2005). ArticleCAS Google Scholar
Gavin, M.A., Clarke, S.R., Negrou, E., Gallegos, A. & Rudensky, A. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat. Immunol.3, 33–41 (2002). ArticleCAS Google Scholar
Chen, Z., Herman, A.E., Matos, M., Mathis, D. & Benoist, C. Where CD4+CD25+ T reg cells impinge on autoimmune diabetes. J. Exp. Med.202, 1387–1397 (2005). ArticleCAS Google Scholar
Sugimoto, N. et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol.18, 1197–1209 (2006). ArticleCAS Google Scholar
Sun, H., Lu, B., Li, R.Q., Flavell, R.A. & Taneja, R. Defective T cell activation and autoimmune disorder in Stra13-deficient mice. Nat. Immunol.2, 1040–1047 (2001). ArticleCAS Google Scholar
He, Y.W. Orphan nuclear receptors in T lymphocyte development. J. Leukoc. Biol.72, 440–446 (2002). CASPubMed Google Scholar
Glimcher, L.H., Townsend, M.J., Sullivan, B.M. & Lord, G.M. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat. Rev. Immunol.4, 900–911 (2004). ArticleCAS Google Scholar
Kim, C.H. et al. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J. Clin. Invest.107, 595–601 (2001). ArticleCAS Google Scholar
Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol.4, 337–342 (2003). ArticleCAS Google Scholar
Schubert, L.A., Jeffery, E., Zhang, Y., Ramsdell, F. & Ziegler, S.F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem.276, 37672–37679 (2001). ArticleCAS Google Scholar
Bettelli, E., Dastrange, M. & Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. USA102, 5138–5143 (2005). ArticleCAS Google Scholar
Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol.8, 191–197 (2007). ArticleCAS Google Scholar
Almeida, A.R., Zaragoza, B. & Freitas, A.A. Indexation as a novel mechanism of lymphocyte homeostasis: the number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. J. Immunol.177, 192–200 (2006). ArticleCAS Google Scholar
Peffault de Latour, R. et al. Ontogeny, function, and peripheral homeostasis of regulatory T cells in the absence of interleukin-7. Blood108, 2300–2306 (2006). ArticleCAS Google Scholar
Grossman, W.J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity21, 589–601 (2004). ArticleCAS Google Scholar
Gondek, D.C., Lu, L.F., Quezada, S.A., Sakaguchi, S. & Noelle, R.J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol.174, 1783–1786 (2005). ArticleCAS Google Scholar
Zhao, D.M., Thornton, A.M., DiPaolo, R.J. & Shevach, E.M. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood107, 3925–3932 (2006). ArticleCAS Google Scholar
Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA93, 5860–5865 (1996). ArticleCAS Google Scholar
Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol.5, R80 (2004). Article Google Scholar