Lapidot, T. et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science255, 1137–1141 (1992). ArticleCASPubMed Google Scholar
Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat. Med.2, 1329–1337 (1996). ArticleCASPubMed Google Scholar
Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science283, 845–848 (1999). ArticleCASPubMed Google Scholar
Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L. & Weissman, I.L. Physiological migration of hematopoietic stem and progenitor cells. Science294, 1933–1936 (2001). ArticleCASPubMed Google Scholar
Kollet, O., Dar, A. & Lapidot, T. The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu. Rev. Immunol. (2006).
Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med.12, 657–664 (2006). ArticleCASPubMed Google Scholar
Lapidot, T. & Petit, I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol.30, 973–981 (2002). ArticleCASPubMed Google Scholar
Papayannopoulou, T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood103, 1580–1585 (2004). ArticleCASPubMed Google Scholar
To, L.B., Haylock, D.N., Simmons, P.J. & Juttner, C.A. The biology and clinical uses of blood stem cells. Blood89, 2233–2258 (1997). CASPubMed Google Scholar
Janowska-Wieczorek, A., Matsuzaki, A. & Marquez, L. The hematopoietic microenvironment: matrix metalloproteinases in the hematopoietic microenvironment. Hematology4, 515–527 (2000). ArticleCASPubMed Google Scholar
Link, D.C. Mechanisms of granulocyte colony-stimulating factor-induced hematopoietic progenitor-cell mobilization. Semin. Hematol.37, 25–32 (2000). ArticleCASPubMed Google Scholar
Morrison, S.J., Wright, D.E. & Weissman, I.L. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc. Natl. Acad. Sci. USA94, 1908–1913 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yamazaki, K. & Allen, T.D. Ultrastructural and morphometric alterations in bone marrow stromal tissue after 7 Gy irradiation. Blood Cells17, 527–549 (1991). CASPubMed Google Scholar
Hasko, G. & Szabo, C. Regulation of cytokine and chemokine production by transmitters and co-transmitters of the autonomic nervous system. Biochem. Pharmacol.56, 1079–1087 (1998). ArticleCASPubMed Google Scholar
Brodde, O.E., Bruck, H. & Leineweber, K. Cardiac adrenoceptors: physiological and pathophysiological relevance. J. Pharmacol. Sci.100, 323–337 (2006). ArticleCASPubMed Google Scholar
Vallone, D., Picetti, R. & Borrelli, E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev.24, 125–132 (2000). ArticleCASPubMed Google Scholar
Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell124, 407–421 (2006). ArticleCASPubMed Google Scholar
Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev.11, 3286–3305 (1997). ArticleCASPubMed Google Scholar
Austin, T.W., Solar, G.P., Ziegler, F.C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood89, 3624–3635 (1997). CASPubMed Google Scholar
Van Den Berg, D.J., Sharma, A.K., Bruno, E. & Hoffman, R. Role of members of the Wnt gene family in human hematopoiesis. Blood92, 3189–3202 (1998). CASPubMed Google Scholar
Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409–414 (2003). ArticleCASPubMed Google Scholar
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature423, 448–452 (2003). ArticleCASPubMed Google Scholar
Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol.6, 314–322 (2005). ArticleCASPubMed Google Scholar
Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl. Acad. Sci. USA100, 3422–3427 (2003). ArticleCASPubMedPubMed Central Google Scholar
Avigdor, A. et al. Membrane type 1-matrix metalloproteinase is directly involved in G-CSF induced human hematopoietic stem and progenitor cell mobilization. ASH Annu. Meet. Abstr.104, 2675 (2004). Google Scholar
Shirvaikar, N., Montano, J., Turner, A.R., Ratajczak, M.Z. & Janowska-Wieczorek, A. Upregulation of MT1-MMP expression by hyaluronic acid enhances homing-related responses of hematopoietic CD34+ cells to an SDF-1 gradient. ASH Annu. Meet. Abstr.104, 2889 (2004). Google Scholar
Wright, D.E. et al. Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood97, 2278–2285 (2001). ArticleCASPubMed Google Scholar
Neth, P. et al. Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells24, 1892–1903 (2006). ArticleCASPubMed Google Scholar
Takahashi, M., Tsunoda, T., Seiki, M., Nakamura, Y. & Furukawa, Y. Identification of membrane-type matrix metalloproteinase-1 as a target of the β-catenin/Tcf4 complex in human colorectal cancers. Oncogene21, 5861–5867 (2002). ArticleCASPubMed Google Scholar
Hoagland, H.C. Hematologic complications of cancer chemotherapy. Semin. Oncol.9, 95–102 (1982). CASPubMed Google Scholar
Cancelas, J.A. & Williams, D.A. Stem cell mobilization by β2-agonists. Nat. Med.12, 278–279 (2006). ArticleCASPubMed Google Scholar
Kondo, H. et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J. Biol. Chem.280, 30192–30200 (2005). ArticleCASPubMed Google Scholar
Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol.2, 172–180 (2001). ArticleCASPubMed Google Scholar
Trowbridge, J.J., Xenocostas, A., Moon, R.T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med.12, 89–98 (2006). ArticleCASPubMed Google Scholar
Kirstetter, P., Anderson, K., Porse, B.T., Jacobsen, S.E. & Nerlov, C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat. Immunol.7, 1048–1056 (2006). ArticleCASPubMed Google Scholar
Scheller, M. et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat. Immunol.7, 1037–1047 (2006). ArticleCASPubMed Google Scholar
Trowbridge, J.J., Moon, R.T. & Bhatia, M. Hematopoietic stem cell biology: too much of a Wnt thing. Nat. Immunol.7, 1021–1023 (2006). ArticleCASPubMed Google Scholar
Spiegel, A. et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood103, 2900–2907 (2004). ArticleCASPubMed Google Scholar
Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol.3, 687–694 (2002). ArticleCASPubMed Google Scholar
Goichberg, P., Shtutman, M., Ben-Ze'ev, A. & Geiger, B. Recruitment of β-catenin to cadherin-mediated intercellular adhesions is involved in myogenic induction. J. Cell Sci.114, 1309–1319 (2001). CASPubMed Google Scholar