Semaphorins and their receptors in immune cell interactions (original) (raw)
Kolodkin, A.L., Matthes, D.J. & Goodman, C.S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell75, 1389–1399 (1993). CASPubMed Google Scholar
Pasterkamp, R.J. & Kolodkin, A.L. Semaphorin junction: making tracks toward neural connectivity. Curr. Opin. Neurobiol.13, 79–89 (2003). CASPubMed Google Scholar
Behar, O., Golden, J.A., Mashimo, H., Schoen, F.J. & Fishman, M.C. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature383, 525–528 (1996). CASPubMed Google Scholar
Gitler, A.D., Lu, M.M. & Epstein, J.A. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev. Cell7, 107–116 (2004). CASPubMed Google Scholar
Gu, C. et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell5, 45–57 (2003). CASPubMedPubMed Central Google Scholar
Toyofuku, T. et al. Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev.18, 435–447 (2004). CASPubMedPubMed Central Google Scholar
Toyofuku, T. et al. Guidance of myocardial patterning in cardiac development by Sema6D reverse signalling. Nat. Cell Biol.6, 1204–1211 (2004). CASPubMed Google Scholar
Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science307, 265–268 (2005). CASPubMed Google Scholar
Serini, G. et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature424, 391–397 (2003). CASPubMed Google Scholar
Sekido, Y. et al. Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc. Natl. Acad. Sci. USA93, 4120–4125 (1996). CASPubMedPubMed Central Google Scholar
Tomizawa, Y. et al. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc. Natl. Acad. Sci. USA98, 13954–13959 (2001). CASPubMedPubMed Central Google Scholar
Tse, C., Xiang, R.H., Bracht, T. & Naylor, S.L. Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Res.62, 542–546 (2002). CASPubMed Google Scholar
Xiang, R. et al. Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Res.62, 2637–2643 (2002). CASPubMed Google Scholar
Kikutani, H., Suzuki, K. & Kumanogoh, A. Immune semaphorins: increasing members and their diverse roles. Adv. Immunol.93, 121–143 (2007). CASPubMed Google Scholar
Semaphorin Nomenclature Committee. Unified nomenclature for the semaphorins/collapsins. Cell97, 551–552 (1999). Google Scholar
Spriggs, M.K. Shared resources between the neural and immune systems: semaphorins join the ranks. Curr. Opin. Immunol.11, 387–391 (1999). CASPubMed Google Scholar
Comeau, M.R. et al. A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity8, 473–482 (1998). CASPubMed Google Scholar
He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell90, 739–751 (1997). CASPubMed Google Scholar
Kolodkin, A.L. et al. Neuropilin is a semaphorin III receptor. Cell90, 753–762 (1997). CASPubMed Google Scholar
Takahashi, T. et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell99, 59–69 (1999). CASPubMed Google Scholar
Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell99, 71–80 (1999). CASPubMed Google Scholar
Pasterkamp, R.J., Peschon, J.J., Spriggs, M.K. & Kolodkin, A.L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature424, 398–405 (2003). PubMed Google Scholar
Suzuki, K. et al. Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature446, 680–684 (2007). CASPubMed Google Scholar
Kumanogoh, A. et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity13, 621–631 (2000). CASPubMed Google Scholar
Kumanogoh, A. et al. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature419, 629–633 (2002). CASPubMed Google Scholar
Bougeret, C. et al. Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation. J. Immunol.148, 318–323 (1992). CASPubMed Google Scholar
Delaire, S., Elhabazi, A., Bensussan, A. & Boumsell, L. CD100 is a leukocyte semaphorin. Cell. Mol. Life Sci.54, 1265–1276 (1998). CASPubMed Google Scholar
Hall, K.T. et al. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc. Natl. Acad. Sci. USA93, 11780–11785 (1996). CASPubMedPubMed Central Google Scholar
Shi, W. et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity13, 633–642 (2000). CASPubMed Google Scholar
Oinuma, I., Ishikawa, Y., Katoh, H. & Negishi, M. The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science305, 862–865 (2004). CASPubMed Google Scholar
Swiercz, J.M., Kuner, R., Behrens, J. & Offermanns, S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron35, 51–63 (2002). CASPubMed Google Scholar
Adachi, T., Flaswinkel, H., Yakura, H., Reth, M. & Tsubata, T. The B cell surface protein CD72 recruits the tyrosine phosphatase SHP-1 upon tyrosine phosphorylation. J. Immunol.160, 4662–4665 (1998). CASPubMed Google Scholar
Adachi, T. et al. SHP-1 requires inhibitory co-receptors to down-modulate B cell antigen receptor-mediated phosphorylation of cellular substrates. J. Biol. Chem.276, 26648–26655 (2001). CASPubMed Google Scholar
Doody, G.M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science269, 242–244 (1995). CASPubMed Google Scholar
Somani, A.K. et al. The SH2 domain containing tyrosine phosphatase-1 down-regulates activation of Lyn and Lyn-induced tyrosine phosphorylation of the CD19 receptor in B cells. J. Biol. Chem.276, 1938–1944 (2001). CASPubMed Google Scholar
Tonks, N.K. & Neel, B.G. From form to function: signaling by protein tyrosine phosphatase. Cell87, 365–368 (1996). CASPubMed Google Scholar
Wu, Y. et al. The B-cell transmembrane protein CD72 binds to and is an in vivo substrate of the protein tyrosine phosphatase SHP-1. Curr. Biol.8, 1009–1017 (1998). CASPubMed Google Scholar
Kumanogoh, A. et al. Requirement for CD100–CD72 interactions in fine-tuning of B-cell antigen receptor signaling and homeostatic maintenance of the B-cell compartment. Int. Immunol.17, 1277–1282 (2005). CASPubMed Google Scholar
Niiro, H. & Clark, E.A. Regulation of B-cell fate by antigen-receptor signals. Nat. Rev. Immunol.2, 945–956 (2002). CASPubMed Google Scholar
Kurosaki, T. Regulation of B cell fates by BCR signaling components. Curr. Opin. Immunol.14, 341–347 (2002). CASPubMed Google Scholar
O'Keefe, T.L., Williams, G.T., Davies, S.L. & Neuberger, M.S. Hyperresponsive B cells in CD22-deficient mice. Science274, 798–801 (1996). CASPubMed Google Scholar
Pan, C., Baumgarth, N. & Parnes, J.R. CD72-deficient mice reveal nonredundant roles of CD72 in B cell development and activation. Immunity11, 495–506 (1999). CASPubMed Google Scholar
Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity5, 551–562 (1996). CASPubMed Google Scholar
Kumanogoh, A. et al. Requirement for the lymphocyte semaphorin, CD100, in the induction of antigen-specific T cells and the maturation of dendritic cells. J. Immunol.169, 1175–1181 (2002). CASPubMed Google Scholar
Watanabe, C. et al. Enhanced immune responses in transgenic mice expressing a truncated form of the lymphocyte semaphorin cd100. J. Immunol.167, 4321–4328 (2001). CASPubMed Google Scholar
Granziero, L. et al. CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5+ B lymphocytes. Blood101, 1962–1969 (2003). CASPubMed Google Scholar
Kruger, R.P., Aurandt, J. & Guan, K.L. Semaphorins command cells to move. Nat. Rev. Mol. Cell Biol.6, 789–800 (2005). CASPubMed Google Scholar
Wong, A.W. et al. CIITA-regulated plexin-A1 affects T-cell-dendritic cell interactions. Nat. Immunol.4, 891–898 (2003). CASPubMed Google Scholar
Takegahara, N. et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat. Cell Biol.8, 615–622 (2006). CASPubMed Google Scholar
Lanier, L.L. & Bakker, A.B. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol. Today21, 611–614 (2000). CASPubMed Google Scholar
Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol.3, 445–453 (2003). CASPubMed Google Scholar
Kumanogoh, A. et al. Nonredundant roles of Sema4A in the immune system: defective T cell priming and Th1/Th2 regulation in Sema4A-deficient mice. Immunity22, 305–316 (2005). CASPubMed Google Scholar
Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell100, 655–669 (2000). CASPubMed Google Scholar
Kuchroo, V.K., Meyers, J.H., Umetsu, D.T. & DeKruyff, R.H. TIM family of genes in immunity and tolerance. Adv. Immunol.91, 227–249 (2006). CASPubMed Google Scholar
Chakravarti, S. et al. Tim-2 regulates T helper type 2 responses and autoimmunity. J. Exp. Med.202, 437–444 (2005). CASPubMedPubMed Central Google Scholar
Rennert, P.D. et al. T cell, Ig domain, mucin domain-2 gene-deficient mice reveal a novel mechanism for the regulation of Th2 immune responses and airway inflammation. J. Immunol.177, 4311–4321 (2006). CASPubMed Google Scholar
Toyofuku, T. et al. Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses angiogenesis via plexin-D1. EMBO J.26, 1373–1384 (2007). CASPubMedPubMed Central Google Scholar
Lepelletier, Y. et al. Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization. Eur. J. Immunol.36, 1782–1793 (2006). CASPubMed Google Scholar
Catalano, A. et al. Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function. Blood107, 3321–3329 (2006). CASPubMed Google Scholar
Czopik, A.K., Bynoe, M.S., Palm, N., Raine, C.S. & Medzhitov, R. Semaphorin 7A is a negative regulator of T cell responses. Immunity24, 591–600 (2006). CASPubMed Google Scholar
Janeway, C.A. Jr, Travers, P., Walport, M. & Schlomchik, M.J. in Immunobiology: the Immune System in Health and Disease 6th edn. (ed. Janeway, C.A., Jr.) 357–361 (Garland Science Publishing, New York, 2005). Google Scholar
Mine, T. et al. CDw108 expression during T-cell development. Tissue Antigens55, 429–436 (2000). CASPubMed Google Scholar
Xu, X. et al. Human semaphorin K1 is glycosylphosphatidylinositol-linked and defines a new subfamily of viral-related semaphorins. J. Biol. Chem.273, 22428–22434 (1998). CASPubMed Google Scholar
Yamada, A. et al. Molecular cloning of a glycosylphosphatidylinositol-anchored molecule CDw108. J. Immunol.162, 4094–4100 (1999). CASPubMed Google Scholar
Andreasen, S.O. et al. Expression and functional importance of collagen-binding integrins, α1β1 and α2β1, on virus-activated T cells. J. Immunol.171, 2804–2811 (2003). CASPubMed Google Scholar
Ben-Horin, S. & Bank, I. The role of very late antigen-1 in immune-mediated inflammation. Clin. Immunol.113, 119–129 (2004). CASPubMed Google Scholar
Hemler, M.E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu. Rev. Immunol.8, 365–400 (1990). CASPubMed Google Scholar
Ray, S.J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity20, 167–179 (2004). CASPubMed Google Scholar
Kang, H.R., Lee, C.G., Homer, R.J. & Elias, J.A. Semaphorin 7A plays a critical role in TGF-β1-induced pulmonary fibrosis. J. Exp. Med.204, 1083–1093 (2007). CASPubMedPubMed Central Google Scholar
Alderson, M.R. et al. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J. Exp. Med.178, 669–674 (1993). CASPubMed Google Scholar
Holmes, S. et al. Sema7A is a potent monocyte stimulator. Scand. J. Immunol.56, 270–275 (2002). CASPubMed Google Scholar
Ishida, I. et al. Involvement of CD100, a lymphocyte semaphorin, in the activation of the human immune system via CD72: implications for the regulation of immune and inflammatory responses. Int. Immunol.15, 1027–1034 (2003). CASPubMed Google Scholar
Billadeau, D.D., Nolz, J.C. & Gomez, T.S. Regulation of T-cell activation by the cytoskeleton. Nat. Rev. Immunol.7, 131–143 (2007). CASPubMed Google Scholar
Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol.7, 678–689 (2007). CASPubMed Google Scholar
Vicente-Manzanares, M. & Sanchez-Madrid, F. Role of the cytoskeleton during leukocyte responses. Nat. Rev. Immunol.4, 110–122 (2004). CASPubMed Google Scholar
Chabbert-de Ponnat, I. et al. Soluble CD100 functions on human monocytes and immature dendritic cells require plexin C1 and plexin B1, respectively. Int. Immunol.17, 439–447 (2005). CASPubMed Google Scholar
Delaire, S. et al. Biological activity of soluble CD100. II. Soluble CD100, similarly to H-SemaIII, inhibits immune cell migration. J. Immunol.166, 4348–4354 (2001). CASPubMed Google Scholar
Walzer, T., Galibert, L., Comeau, M.R. & De Smedt, T. Plexin C1 engagement on mouse dendritic cells by viral semaphorin A39R induces actin cytoskeleton rearrangement and inhibits integrin-mediated adhesion and chemokine-induced migration. J. Immunol.174, 51–59 (2005). CASPubMed Google Scholar
Benvenuti, F. et al. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science305, 1150–1153 (2004). CASPubMed Google Scholar
Germain, R.N., Miller, M.J., Dustin, M.L. & Nussenzweig, M.C. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat. Rev. Immunol.6, 497–507 (2006). CASPubMed Google Scholar
Allen, C.D., Okada, T. & Cyster, J.G. Germinal-center organization and cellular dynamics. Immunity27, 190–202 (2007). CASPubMedPubMed Central Google Scholar
Mempel, T.R., Scimone, M.L., Mora, J.R. & von Andrian, U.H. In vivo imaging of leukocyte trafficking in blood vessels and tissues. Curr. Opin. Immunol.16, 406–417 (2004). CASPubMed Google Scholar