p38-dependent marking of inflammatory genes for increased NF-κB recruitment (original) (raw)
Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell98, 285–294 (1999). ArticleCAS Google Scholar
Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature389, 349–352 (1997). ArticleCAS Google Scholar
Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell103, 263–271 (2000). ArticleCAS Google Scholar
Tse, C., Sera, T., Wolffe, A. P. & Hansen, J. C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol.18, 4629–4638 (1998). ArticleCAS Google Scholar
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCAS Google Scholar
Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature399, 491–496 (1999). ArticleCAS Google Scholar
Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science288, 1422–1425 (2000). ArticleCAS Google Scholar
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature410, 116–120 (2001). ArticleCAS Google Scholar
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature410, 120–124 (2001). ArticleCAS Google Scholar
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science292, 110–113 (2001). ArticleCAS Google Scholar
Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature412, 561–565 (2001). ArticleCAS Google Scholar
Vandel, L. et al. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol.21, 6484–6494 (2001). ArticleCAS Google Scholar
Hwang, K. K., Eissenberg, J. C. & Worman, H. J. Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc. Natl Acad. Sci. USA98, 11423–11427 (2001). ArticleCAS Google Scholar
Jacobs, S. A. et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J.20, 5232–5241 (2001). ArticleCAS Google Scholar
Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma106, 348–360 (1997). ArticleCAS Google Scholar
Van Hooser, A., Goodrich, D. W., Allis, C. D., Brinkley, B. R. & Mancini, M. A. Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J. Cell. Sci.111, 3497–3506 (1998). CASPubMed Google Scholar
Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A. & Allis, C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell97, 99–109 (1999). ArticleCAS Google Scholar
Mahadevan, L. C., Willis, A. C. & Barratt, M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell65, 775–783 (1991). ArticleCAS Google Scholar
Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J.18, 4779–4793 (1999). ArticleCAS Google Scholar
Clayton, A. L., Rose, S., Barratt, M. J. & Mahadevan, L. C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J.19, 3714–3726 (2000). ArticleCAS Google Scholar
Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell.5, 905–915 (2000). ArticleCAS Google Scholar
Lo, W. S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell.5, 917–926 (2000). ArticleCAS Google Scholar
Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev.14, 3003–3013 (2000). ArticleCAS Google Scholar
Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science285, 886–891 (1999). ArticleCAS Google Scholar
Thomson, S., Mahadevan, L. C. & Clayton, A. L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin. Cell. Dev. Biol.10, 205–214 (1999). ArticleCAS Google Scholar
Lo, W. S. et al. Snf1 — a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science293, 1142–1146 (2001). ArticleCAS Google Scholar
Parvin, J. D. & Young, R. A. Regulatory targets in the RNA polymerase II holoenzyme. Curr. Opin. Genet. Dev.8, 565–570 (1998). ArticleCAS Google Scholar
Chadee, D. N. et al. Increased Ser10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts. J. Biol. Chem.274, 24914–24920 (1999). ArticleCAS Google Scholar
English, J. et al. New insights into the control of MAP kinase pathways. Exp. Cell. Res.253, 255–270 (1999). ArticleCAS Google Scholar
Ono, K. & Han, J. The p38 signal transduction pathway: activation and function. Cell Signal.12, 1–13 (2000). ArticleCAS Google Scholar
Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell103, 239–252 (2000). ArticleCAS Google Scholar
Kyriakis, J. M. & Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev.81, 807–869 (2001). ArticleCAS Google Scholar
DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. & Karin, M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature388, 548–554 (1997). ArticleCAS Google Scholar
Regnier, C. H. et al. Identification and characterization of an IκB kinase. Cell90, 373–383 (1997). ArticleCAS Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663 (2000). ArticleCAS Google Scholar
Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol.16, 225–260 (1998). ArticleCAS Google Scholar
Baldwin, A. S. Jr The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol.14, 649–683 (1996). ArticleCAS Google Scholar
Saccani, S., Pantano, S. & Natoli, G. Two waves of nuclear factor κB recruitment to target promoters. J. Exp. Med.193, 1351–1359 (2001). ArticleCAS Google Scholar
Weinmann, A. S., Plevy, S. E. & Smale, S. T. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity11, 665–675 (1999). ArticleCAS Google Scholar
Cella, M., Sallusto, F. & Lanzavecchia, A. Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol.9, 10–16 (1997). ArticleCAS Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCAS Google Scholar
Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunol.1, 311–316 (2000). ArticleCAS Google Scholar
Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med.179, 1109–1118 (1994). ArticleCAS Google Scholar
Hecht, A. & Grunstein, M. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Meth. Enzymol.304, 399–414 (1999). ArticleCAS Google Scholar
Weinmann A. S. et al. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nature Immunol.2, 51–57 (2001). ArticleCAS Google Scholar
Alepuz, P. M., Jovanovic, A., Reiser, V. & Ammerer, G. Stress-induced MAP kinase Hog 1 is part of transcription activation complexes. Mol. Cell.7, 767–777 (2001). ArticleCAS Google Scholar