Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation (original) (raw)
Calabi, F. & Milstein, C. The molecular biology of CD1. Semin. Immunol.12, 503–509 (2000). ArticleCAS Google Scholar
Porcelli, S. A. & Modlin, R. L. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol.17, 297–329 (1999). ArticleCAS Google Scholar
Zeng, Z. et al. Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science277, 339–345 (1997). ArticleCAS Google Scholar
Burdin, N. et al. Structural requirements for antigen presentation by mouse CD1. Proc. Natl. Acad. Sci. USA97, 10156–10161 (2000). ArticleCAS Google Scholar
Niazi, K. et al. The A′ and F′ pockets of human CD1b are both required for optimal presentation of lipid antigens to T cells. J. Immunol.166, 2562–2570 (2001). ArticleCAS Google Scholar
Ernst, W. A. et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity8, 331–340 (1998). ArticleCAS Google Scholar
Joyce, S. et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science279, 1541–1544 (1998). ArticleCAS Google Scholar
Naidenko, O. et al. Binding and antigen presentation of ceramide-containing glycolipids by soluble mound and human CD1d molecules. J. Exp. Med.190, 1069–1079 (1999). ArticleCAS Google Scholar
Grant, E. P. et al. Molecular recognition of lipid antigens by T cell receptors. J. Exp. Med.189, 195–205 (1999). ArticleCAS Google Scholar
Moody, D. B., Besra, G. S., Wilson, I. A. & Porcelli, S. A. The molecular basis of CD1-mediated presentation of lipid antigens. Immunol. Rev.172, 285–296 (1999). ArticleCAS Google Scholar
Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science278, 1626–1629 (1997). ArticleCAS Google Scholar
Bendelac, A. CD1: presenting unusual antigens to unusual T lymphocytes. Science269, 185–186 (1995). ArticleCAS Google Scholar
Sieling, P. A. et al. CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity. J. Immunol.162, 1851–1858 (1999). CASPubMed Google Scholar
Porcelli, S., Morita, C. T. & Brenner, M. B. CD1b restricts the response of human CD4−8− T lymphoyctes to a microbial antigen. Nature360, 593–597 (1992). ArticleCAS Google Scholar
Moody, D. B. et al. CD1c-mediated T cell recognition of mycobacterial glycolipids in M. tuberculosis infection. Nature404, 884–888 (2000). ArticleCAS Google Scholar
Gumperz, J. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity12, 211–221 (2000). ArticleCAS Google Scholar
Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol.29, 1667–1675 (1999). ArticleCAS Google Scholar
Beckman, E. M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature372, 691–694 (1994). ArticleCAS Google Scholar
Sieling, P. A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science269, 227–230 (1995). ArticleCAS Google Scholar
Moody, D. B. et al. Structural requirements for glycolipid antigen recognition by CD1b- restricted T cells. Science278, 283–286 (1997). ArticleCAS Google Scholar
Moody, D. B., Reinhold, B. B., Reinhold, V. N., Besra, G. S. & Porcelli, S. A. Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunol. Lett.65, 85–91 (1999). ArticleCAS Google Scholar
Jackman, R. M. et al. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity8, 341–351 (1998). ArticleCAS Google Scholar
Sugita, M. et al. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science273, 349–352 (1996). ArticleCAS Google Scholar
Prigozy, T. I. et al. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity6, 187–197 (1997). ArticleCAS Google Scholar
Shamshiev, A. et al. The αβ T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity13, 255–264 (2000). ArticleCAS Google Scholar
Sacchettini, J. C. & Gordon, J. I. Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J. Biol. Chem.268, 18399–18402 (1993). CASPubMed Google Scholar
Moody, D. B. et al. CD1b-mediated T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J. Exp. Med.192, 965–976 (2000). ArticleCAS Google Scholar
Datta, A. K., Takayama, K., Nashed, M. A. & Anderson, L. An improved synthesis of trehalose 6-mono- and 6,6′-dicorynemycolates and related esters. Carb. Res.218, 95–109 (1991). ArticleCAS Google Scholar
Mukherjee, S., Soe, T. T. & Maxfield, F. R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol.144, 1271–1284 (1999). ArticleCAS Google Scholar
Briken, V., Jackman, R. M., Watts, G. F., Rogers, R. A. & Porcelli, S. A. Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med.192, 281–288 (2000). ArticleCAS Google Scholar
Lanzavecchia, A. Mechanisms of antigen uptake for presentation. Curr. Opin. Immunol.8, 348–354 (1996). ArticleCAS Google Scholar
Novak, E. J. & Rabinovitch, P. S. Improved sensitivity in flow cytometric intracellular ionized calcium measurement using fluo-3/Fura Red fluorescence ratios. Cytometry17, 135–141 (1994). ArticleCAS Google Scholar
Caras, I. W., Weddell, G. N., Davitz, M. A., Nussenzweig, V. & Martin, D. W. J. Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science238, 1280–1283 (1987). ArticleCAS Google Scholar
Tykocinski, M. L. et al. Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Proc. Natl. Acad. Sci. USA85, 3555–3559 (1988). ArticleCAS Google Scholar
Geho, D. H. et al. Glycosyl-phosphatidylinositol reanchoring unmasks distinct antigen-presenting pathways for CD1b and CD1c. J. Immunol.165, 1272–1277 (2000). ArticleCAS Google Scholar
Kirchhausen, T., Bonifacino, J. S. & Riezman, H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell Biol.9, 488–495 (1997). ArticleCAS Google Scholar
Martin, L. H., Calabi, F., Lefebvre, F. A., Bilsland, C. A. & Milstein, C. Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c. Proc. Natl. Acad. Sci. USA84, 9189–9193 (1987). ArticleCAS Google Scholar
Porcelli, S. A. The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol.59, 1–98 (1995). ArticleCAS Google Scholar
Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med.182, 2091–2096 (1995). ArticleCAS Google Scholar
Coles, M. C. & Raulet, D. H. NK1. 1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol.164, 2412–2418 (2000). ArticleCAS Google Scholar
Reinherz, E. L., Kung, P. C., Goldstein, G., Levey, R. H. & Schlossman, S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Sci. USA77, 1588–1592 (1980). ArticleCAS Google Scholar
Cresswell, P. Invariant chain structure and MHC class II function. Cell84, 505–507 (1996). ArticleCAS Google Scholar
Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature413, 531–534 (2001). ArticleCAS Google Scholar
Kaufmann, S. H. Immunity to intracellular microbial pathogens. Immunol. Today16, 338–342 (1995). ArticleCAS Google Scholar
Lee, R. E., Brennan, P. J. & Besra, G. S. Mycobacterium tuberculosis cell envelope. Curr. Top. Microbiol. Immunol.215, 1–27 (1996). CASPubMed Google Scholar