Prolonged IFN-γ–producing NKT response induced with α-galactosylceramide–loaded DCs (original) (raw)
Bendelac, A., Rivera, M.N., Park, S.-H. & Roark, J.H. Mouse CD1-specific NK1 T cells. Annu. Rev. Immunol.15, 535–562 (1997). ArticleCASPubMed Google Scholar
MacDonald, H.R. CD1d-glycolipid Tetramers. A new tool to monitor natural killer T cells in health and disease. J. Exp. Med.192, 15–20 (2000). Article Google Scholar
Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med.7, 1052–1056 (2001). ArticleCASPubMed Google Scholar
Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nature Med.7, 1057–1062 (2001). ArticleCASPubMed Google Scholar
Wang, B., Geng, Y.B. & Wang, C.R. CD1-restricted NKT cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med.194, 313–320 (2001). ArticlePubMedPubMed Central Google Scholar
Pal, E. et al. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα14 NK T cells. J. Immunol.166, 662–668 (2001). ArticleCASPubMed Google Scholar
Jahng, A.W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med.194, 1789–1799 (2001). ArticleCASPubMedPubMed Central Google Scholar
Singh, A.K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med.194, 1801–1811 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kawano, T. et al. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc. Natl. Acad. Sci. USA95, 5690–5693 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science278, 1623–1626 (1997). ArticleCASPubMed Google Scholar
Toura, I. et al. Inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J. Immunol.163, 2387–2391 (1999). CASPubMed Google Scholar
Shin, T. et al. Inhibition of tumor metastasis by adoptive transfer of IL-12-activated Vα14 NKT cells. Int. J. Cancer91, 523–528 (2001). ArticleCASPubMed Google Scholar
Nakagawa, R. et al. Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by α-galactosylceramide in mice. J. Immunol.166, 6578–6584 (2001). ArticleCASPubMed Google Scholar
Smyth, M.J. et al. Sequential production of interferon-γ by NK1. 1+ T cells and natural killer cells is essential for the antimetastatic effect of α- galactosylceramide. Blood99, 1259–1266 (2002). ArticleCASPubMed Google Scholar
Smyth, M.J., Taniguchi, M. & Street, S.E. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol.165, 2665–2670 (2000). ArticleCASPubMed Google Scholar
Takeda, K. et al. Relative contribution of NK and NKT cells to the anti-metastatic activities of IL-12. Int. Immunol.12, 909–914 (2000). ArticleCASPubMed Google Scholar
Gonzalez-Aseguinolaza, G. et al. α-galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria. Proc. Natl. Acad. Sci. USA97, 8461–8466 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kakimi, K., Guidotti, L.G., Koezuka, Y. & Chisari, F.V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med.192, 921–930 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ishikawa, H. et al. CD4+ Vα14 NKT cells play a crucial role in an early stage of protective immunity against infection with Leishmania major. Int. Immunol.12, 1267–1274 (2000). ArticleCASPubMed Google Scholar
Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science278, 1626–1629 (1997). ArticleCASPubMed Google Scholar
Burdin, N. et al. Selective ability of mouse CD1 to present glycolipids: α-galactosylceramide specifically stimulates Vα14+ NK T lymphocytes. J. Immunol.161, 3271–3281 (1998). CASPubMed Google Scholar
Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T Cells is highly conserved through mammalian evolution. J. Exp. Med.188, 1521–1528 (1998). ArticleCASPubMedPubMed Central Google Scholar
Spada, F.M., Koezuka, Y. & Porcelli, S.A. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med.188, 1529–1534 (1998). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, J.L. & Kronenberg, M. Presentation of self and microbial lipids by CD1 molecules. Curr. Opin. Immunol.13, 19–25 (2001). ArticleCASPubMed Google Scholar
Morita, M. et al. Structure-activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem.38, 2176 (1995).
Zeng, Z.-H. et al. Crystal structure of mouse CD1: an MHC- like fold with a large hydrophobic binding groove. Science277, 339–345 (1997). ArticleCASPubMed Google Scholar
Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med.191, 1895–1904 (2000). ArticleCASPubMedPubMed Central Google Scholar
Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med.192, 741–754 (2000). ArticleCASPubMedPubMed Central Google Scholar
Tomura, M. et al. A novel function of Vα14+ CD4+ NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J. Immunol.163, 93–101 (1999). CASPubMed Google Scholar
Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med.189, 1121–1128 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yang, O.O. et al. CD1d on myeloid dendritic cells stimulates cytokine secretion from and cytolytic activity of Vα24JαQ T cells: a feedback mechanism for immune regulation. J. Immunol.165, 3756–3762 (2000). ArticleCASPubMed Google Scholar
Trobonjaca, Z., Leithauser, F., Moller, P., Schirmbeck, R. & Reimann, J. Activating immunity in the liver. I. liver dendritic cells (but not hepatocytes) are potent activators of IFN-γ release by liver NKT cells. J. Immunol.167, 1413–1422 (2001). ArticleCASPubMed Google Scholar
Kadowaki, N. et al. Distinct cytokine profiles of neonatal natural killer T cells after expansion with subsets of dendritic cells. J. Exp. Med.193, 1221–1226 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T. et al. Analysis of human Vα24+ CD4+ NKT cells activated by α-glycosylceramide-pulsed monocyte-derived dendritic cells. J. Immunol.164, 4458–4464 (2000). ArticleCASPubMed Google Scholar
Nishimura, T. et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int. Immunol.12, 987–994 (2000). ArticleCASPubMed Google Scholar
Inaba, K., Metlay, J.P., Crowley, M.T. & Steinman, R.M. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J. Exp. Med.172, 631–640 (1990). ArticleCASPubMed Google Scholar
Eberl, G. & MacDonald, H.R. Rapid death and regeneration of NKT cells in anti-CD3e or IL-12-treated mice: a major role for bone marrow in NKT cell homoestasis. Immunity9, 345–353 (1998). ArticleCASPubMed Google Scholar
Osman, Y. et al. Activation of hepatic NKT cells and subsequent liver injury following administration of α-galactosylceramide. Eur. J. Immunol.30, 1919–1928 (2000). ArticleCASPubMed Google Scholar
Hayakawa, Y. et al. Critical contribution of IFN-γ and NK cells, but not perforin- mediated cytotoxicity, to anti-metastatic effect of α-galactosylceramide. Eur. J. Immunol.31, 1720–1727 (2001). ArticleCASPubMed Google Scholar
Muller, G. et al. Fetal calf serum-free generation of functionally active murine dendritic cells suitable for in vivo therapeutic approaches. J. Invest. Dermatol.114, 142–149 (2000). ArticleCASPubMed Google Scholar
Inaba, K. et al. The formation of immunogenic MHC class II- peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med.191, 927–936 (2000). ArticleCASPubMedPubMed Central Google Scholar
Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol.2, 882–888 (2001). ArticleCAS Google Scholar
Dunne, J. et al. Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. J. Immunol.167, 3129–3138 (2001). ArticleCASPubMed Google Scholar
Wilson, S.B. & Byrne, M.C. Gene expression in NKT cells: defining a functionally distinct CD1d- restricted T cell subset. Curr. Opin. Immunol.13, 555–561 (2001). ArticleCASPubMed Google Scholar
Nakui, M. et al. Potentiation of antitumor effect of NKT cell ligand, α- galactosylceramide by combination with IL-12 on lung metastasis of malignant melanoma cells. Clin. Exp. Metastasis18, 147–153 (2000). ArticleCASPubMed Google Scholar
Carnaud, C. et al. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol.163, 4647–4650 (1999). CASPubMed Google Scholar
Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med.176, 1693–1702 (1992). ArticleCASPubMed Google Scholar