B cells regulate autoimmunity by provision of IL-10 (original) (raw)
References
Miller, J.F. & Basten, A. Mechanisms of tolerance to self. Curr. Opin. Immunol.8, 815–821 (1996). ArticleCAS Google Scholar
Fulcher, D.A. et al. The fate of self-reactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J. Exp. Med.183, 2313–2328 (1996). ArticleCAS Google Scholar
Chan, O. & Shlomchik, M.J. A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J. Immunol.160, 51–59 (1998). CASPubMed Google Scholar
Martin, R. & McFarland, H.F. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit. Rev. Clin. Lab. Sci.32, 121–182 (1995). ArticleCAS Google Scholar
Kuchroo, V.K. et al. Cytokines and adhesion molecules contribute to the ability of myelin proteolipid protein-specific T cell clones to mediate experimental allergic encephalomyelitis. J. Immunol.151, 4371–4382 (1993). CASPubMed Google Scholar
Iglesias, A., Bauer, J., Litzenburger, T., Schubart, A. & Linington, C. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia36, 220–234 (2001). ArticleCAS Google Scholar
Myers, K.J., Sprent, J., Dougherty, J.P. & Ron, Y. Synergy between encephalitogenic T cells and myelin basic protein-specific antibodies in the induction of experimental autoimmune encephalomyelitis. J. Neuroimmunol.41, 1–8 (1992). ArticleCAS Google Scholar
Wolf, S.D., Dittel, B.N., Hardardottir, F. & Janeway, C.A. Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med.184, 2271–2278 (1996). ArticleCAS Google Scholar
Day, M.J., Tse, A.G., Puklavec, M., Simmonds, S.J. & Mason, D.W. Targeting autoantigen to B cells prevents the induction of a cell-mediated autoimmune disease in rats. J. Exp. Med.175, 655–659 (1992). ArticleCAS Google Scholar
Saoudi, A., Simmonds, S., Huitinga, I. & Mason, D. Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells. J. Exp. Med.182, 335–344 (1995). ArticleCAS Google Scholar
Khoury, S.J., Hancock, W.W. & Weiner, H.L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med.176, 1355–1364 (1992). ArticleCAS Google Scholar
Kennedy, M.K., Torrance, D.S., Picha, K.S. & Mohler, K.M. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J. Immunol.149, 2496–2505 (1992). CASPubMed Google Scholar
Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol.161, 3299–3306 (1998). CAS Google Scholar
Samoilova, E.B., Horton, J.L. & Chen, Y. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell. Immunol.188, 118–124 (1998). ArticleCAS Google Scholar
Skok, J., Poudrier, J. & Gray, D. Dendritic cell-derived IL-12 promotes B cell induction of Th2 differentiation: a feedback regulation of Th1 development. J. Immunol.163, 4284–4291 (1999). CASPubMed Google Scholar
Kitamura, D. & Rajewsky, K. Targeted disruption of μ chain membrane exon causes loss of heavy-chain allelic exclusion. Nature356, 154–156 (1992). ArticleCAS Google Scholar
Mendel, I., Derosbo, N.K. & Bennun, A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2(B) mice - fine specificity and T-cell receptor V-β expression of encephalitogenic T-cells. Eur. J. Immunol.25, 1951–1959 (1995). ArticleCAS Google Scholar
Lyons, J.A., San, M., Happ, M.P. & Cross, A.H. B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur. J. Immunol.29, 3432–3439 (1999). ArticleCAS Google Scholar
Goodnow, C.C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature334, 676–682 (1988). ArticleCAS Google Scholar
Mauri, C., Mars, L.T. & Londei, M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nature Med.6, 673–679 (2000). ArticleCAS Google Scholar
Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R.S. & Bhan, A.K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity16, 219–230 (2002). ArticleCAS Google Scholar
Singh, A.K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med.194, 1801–1811 (2001). ArticleCAS Google Scholar
Colgan, S.P., Hershberg, R.M., Furuta, G.T. & Blumberg, R.S. Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Proc. Natl. Acad. Sci. USA96, 13938–13943 (1999). ArticleCAS Google Scholar
Herzenberg, L.A. B-1 cells: the lineage question revisited. Immunol. Rev.175, 9–22 (2000). ArticleCAS Google Scholar
Rothstein, T.L. Cutting edge commentary: two B-1 or not to be one. J. Immunol.168, 4257–4261 (2002). ArticleCAS Google Scholar
O'Garra, A. et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur. J. Immunol.22, 711–717 (1992). ArticleCAS Google Scholar
Whitmore, A.C., Haughton, G. & Arnold, L.W. Phenotype of B cells responding to the thymus-independent type-2 antigen polyvinyl pyrrolidinone. Int. Immunol.8, 533–542 (1996). ArticleCAS Google Scholar
Segal, B.M., Dwyer, B.K. & Shevach, E.M. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med.187, 537–546 (1998). ArticleCAS Google Scholar
Xiao, B.G., Bai, X.F., Zhang, G.X. & Link, H. Suppression of acute and protracted-relapsing experimental allergic encephalomyelitis by nasal administration of low-dose IL-10 in rats. J. Neuroimmunol.84, 230–237 (1998). ArticleCAS Google Scholar
Cannella, B., Gao, Y.L., Brosnan, C. & Raine, C.S. IL-10 fails to abrogate experimental autoimmune encephalomyelitis. J. Neurosci. Res.45, 735–746 (1996). ArticleCAS Google Scholar
Croxford, J.L., Feldmann, M., Chernajovsky, Y. & Baker, D. Different therapeutic outcomes in experimental allergic encephalomyelitis dependent upon the mode of delivery of IL-10: a comparison of the effects of protein, adenoviral or retroviral IL-10 delivery into the central nervous system. J. Immunol.166, 4124–4130 (2001). ArticleCAS Google Scholar
Mathisen, P.M., Yu, M., Johnson, J.M., Drazba, J.A. & Tuohy, V.K. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J. Exp. Med.186, 159–164 (1997). ArticleCAS Google Scholar
Cua, D.J., Groux, H., Hinton, D.R., Stohlman, S.A. & Coffman, R.L. Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis. J. Exp. Med.189, 1005–1010 (1999). ArticleCAS Google Scholar
Stockinger, B., Zal, T., Zal, A. & Gray, D. B cells solicit their own help from T cells. J. Exp. Med.183, 891–899 (1996). ArticleCAS Google Scholar
Macaulay, A.E., DeKruyff, R.H., Goodnow, C.C. & Umetsu, D.T. Antigen-specific B cells preferentially induce CD4+ T cells to produce IL-4. J. Immunol.158, 4171–4179 (1997). CASPubMed Google Scholar
Harris, D.P. et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunol.1, 475–482 (2000). ArticleCAS Google Scholar
Moulin, V. et al. B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J. Exp. Med.192, 475–482 (2000). ArticleCAS Google Scholar
Maldonado-Lopez, R., Maliszewski, C., Urbain, J. & Moser, M. Cytokines regulate the capacity of CD8α(+) and CD8α(−) dendritic cells to prime Th1/Th2 cells in vivo. J. Immunol.167, 4345–4350 (2001). ArticleCAS Google Scholar
D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nature Immunol.1, 387–391 (2000). ArticleCAS Google Scholar
Cumberbatch, M., Dearman, R.J. & Kimber, I. Langerhans cells require signals from both tumour necrosis factor-α and interleukin-1β for migration. Immunology92, 388–395 (1997). ArticleCAS Google Scholar
Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75, 263–274 (1993). ArticleCAS Google Scholar
Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity1, 167–178 (1994). ArticleCAS Google Scholar
Xu, J. et al. Mice deficient for the CD40 ligand. Immunity1, 423–431 (1994). ArticleCAS Google Scholar
Beech, J.T., Bainbridge, T. & Thompson, S.J. Incorporation of cells into an ELISA system enhances antigen-driven lymphokine detection. J. Immunol. Meth.205, 163–168 (1997). ArticleCAS Google Scholar
Rolink, A., Melchers, F. & Andersson, J. The SCID but not the RAG-2 gene product is required for Sμ-Sɛ heavy chain class switching. Immunity5, 319–330 (1996). ArticleCAS Google Scholar