B cells regulate autoimmunity by provision of IL-10 (original) (raw)

References

  1. Miller, J.F. & Basten, A. Mechanisms of tolerance to self. Curr. Opin. Immunol. 8, 815–821 (1996).
    Article CAS Google Scholar
  2. Fulcher, D.A. et al. The fate of self-reactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J. Exp. Med. 183, 2313–2328 (1996).
    Article CAS Google Scholar
  3. Chan, O. & Shlomchik, M.J. A new role for B cells in systemic autoimmunity: B cells promote spontaneous T cell activation in MRL-lpr/lpr mice. J. Immunol. 160, 51–59 (1998).
    CAS PubMed Google Scholar
  4. Martin, R. & McFarland, H.F. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit. Rev. Clin. Lab. Sci. 32, 121–182 (1995).
    Article CAS Google Scholar
  5. Kuchroo, V.K. et al. Cytokines and adhesion molecules contribute to the ability of myelin proteolipid protein-specific T cell clones to mediate experimental allergic encephalomyelitis. J. Immunol. 151, 4371–4382 (1993).
    CAS PubMed Google Scholar
  6. Iglesias, A., Bauer, J., Litzenburger, T., Schubart, A. & Linington, C. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia 36, 220–234 (2001).
    Article CAS Google Scholar
  7. Myers, K.J., Sprent, J., Dougherty, J.P. & Ron, Y. Synergy between encephalitogenic T cells and myelin basic protein-specific antibodies in the induction of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 41, 1–8 (1992).
    Article CAS Google Scholar
  8. Wolf, S.D., Dittel, B.N., Hardardottir, F. & Janeway, C.A. Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278 (1996).
    Article CAS Google Scholar
  9. Day, M.J., Tse, A.G., Puklavec, M., Simmonds, S.J. & Mason, D.W. Targeting autoantigen to B cells prevents the induction of a cell-mediated autoimmune disease in rats. J. Exp. Med. 175, 655–659 (1992).
    Article CAS Google Scholar
  10. Saoudi, A., Simmonds, S., Huitinga, I. & Mason, D. Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells. J. Exp. Med. 182, 335–344 (1995).
    Article CAS Google Scholar
  11. Khoury, S.J., Hancock, W.W. & Weiner, H.L. Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor β, interleukin 4, and prostaglandin E expression in the brain. J. Exp. Med. 176, 1355–1364 (1992).
    Article CAS Google Scholar
  12. Kennedy, M.K., Torrance, D.S., Picha, K.S. & Mohler, K.M. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J. Immunol. 149, 2496–2505 (1992).
    CAS PubMed Google Scholar
  13. Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 161, 3299–3306 (1998).
    CAS Google Scholar
  14. Samoilova, E.B., Horton, J.L. & Chen, Y. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell. Immunol. 188, 118–124 (1998).
    Article CAS Google Scholar
  15. Skok, J., Poudrier, J. & Gray, D. Dendritic cell-derived IL-12 promotes B cell induction of Th2 differentiation: a feedback regulation of Th1 development. J. Immunol. 163, 4284–4291 (1999).
    CAS PubMed Google Scholar
  16. Kitamura, D. & Rajewsky, K. Targeted disruption of μ chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356, 154–156 (1992).
    Article CAS Google Scholar
  17. Mendel, I., Derosbo, N.K. & Bennun, A. A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2(B) mice - fine specificity and T-cell receptor V-β expression of encephalitogenic T-cells. Eur. J. Immunol. 25, 1951–1959 (1995).
    Article CAS Google Scholar
  18. Lyons, J.A., San, M., Happ, M.P. & Cross, A.H. B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur. J. Immunol. 29, 3432–3439 (1999).
    Article CAS Google Scholar
  19. Goodnow, C.C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).
    Article CAS Google Scholar
  20. Mauri, C., Mars, L.T. & Londei, M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nature Med. 6, 673–679 (2000).
    Article CAS Google Scholar
  21. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R.S. & Bhan, A.K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).
    Article CAS Google Scholar
  22. Singh, A.K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811 (2001).
    Article CAS Google Scholar
  23. Colgan, S.P., Hershberg, R.M., Furuta, G.T. & Blumberg, R.S. Ligation of intestinal epithelial CD1d induces bioactive IL-10: critical role of the cytoplasmic tail in autocrine signaling. Proc. Natl. Acad. Sci. USA 96, 13938–13943 (1999).
    Article CAS Google Scholar
  24. Herzenberg, L.A. B-1 cells: the lineage question revisited. Immunol. Rev. 175, 9–22 (2000).
    Article CAS Google Scholar
  25. Rothstein, T.L. Cutting edge commentary: two B-1 or not to be one. J. Immunol. 168, 4257–4261 (2002).
    Article CAS Google Scholar
  26. O'Garra, A. et al. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur. J. Immunol. 22, 711–717 (1992).
    Article CAS Google Scholar
  27. Whitmore, A.C., Haughton, G. & Arnold, L.W. Phenotype of B cells responding to the thymus-independent type-2 antigen polyvinyl pyrrolidinone. Int. Immunol. 8, 533–542 (1996).
    Article CAS Google Scholar
  28. Segal, B.M., Dwyer, B.K. & Shevach, E.M. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med. 187, 537–546 (1998).
    Article CAS Google Scholar
  29. Xiao, B.G., Bai, X.F., Zhang, G.X. & Link, H. Suppression of acute and protracted-relapsing experimental allergic encephalomyelitis by nasal administration of low-dose IL-10 in rats. J. Neuroimmunol. 84, 230–237 (1998).
    Article CAS Google Scholar
  30. Cannella, B., Gao, Y.L., Brosnan, C. & Raine, C.S. IL-10 fails to abrogate experimental autoimmune encephalomyelitis. J. Neurosci. Res. 45, 735–746 (1996).
    Article CAS Google Scholar
  31. Croxford, J.L., Feldmann, M., Chernajovsky, Y. & Baker, D. Different therapeutic outcomes in experimental allergic encephalomyelitis dependent upon the mode of delivery of IL-10: a comparison of the effects of protein, adenoviral or retroviral IL-10 delivery into the central nervous system. J. Immunol. 166, 4124–4130 (2001).
    Article CAS Google Scholar
  32. Mathisen, P.M., Yu, M., Johnson, J.M., Drazba, J.A. & Tuohy, V.K. Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. J. Exp. Med. 186, 159–164 (1997).
    Article CAS Google Scholar
  33. Cua, D.J., Groux, H., Hinton, D.R., Stohlman, S.A. & Coffman, R.L. Transgenic interleukin 10 prevents induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 189, 1005–1010 (1999).
    Article CAS Google Scholar
  34. Stockinger, B., Zal, T., Zal, A. & Gray, D. B cells solicit their own help from T cells. J. Exp. Med. 183, 891–899 (1996).
    Article CAS Google Scholar
  35. Macaulay, A.E., DeKruyff, R.H., Goodnow, C.C. & Umetsu, D.T. Antigen-specific B cells preferentially induce CD4+ T cells to produce IL-4. J. Immunol. 158, 4171–4179 (1997).
    CAS PubMed Google Scholar
  36. Harris, D.P. et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunol. 1, 475–482 (2000).
    Article CAS Google Scholar
  37. Moulin, V. et al. B lymphocytes regulate dendritic cell (DC) function in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J. Exp. Med. 192, 475–482 (2000).
    Article CAS Google Scholar
  38. Maldonado-Lopez, R., Maliszewski, C., Urbain, J. & Moser, M. Cytokines regulate the capacity of CD8α(+) and CD8α(−) dendritic cells to prime Th1/Th2 cells in vivo. J. Immunol. 167, 4345–4350 (2001).
    Article CAS Google Scholar
  39. D'Amico, G. et al. Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nature Immunol. 1, 387–391 (2000).
    Article CAS Google Scholar
  40. Cumberbatch, M., Dearman, R.J. & Kimber, I. Langerhans cells require signals from both tumour necrosis factor-α and interleukin-1β for migration. Immunology 92, 388–395 (1997).
    Article CAS Google Scholar
  41. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).
    Article CAS Google Scholar
  42. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).
    Article CAS Google Scholar
  43. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).
    Article CAS Google Scholar
  44. Beech, J.T., Bainbridge, T. & Thompson, S.J. Incorporation of cells into an ELISA system enhances antigen-driven lymphokine detection. J. Immunol. Meth. 205, 163–168 (1997).
    Article CAS Google Scholar
  45. Rolink, A., Melchers, F. & Andersson, J. The SCID but not the RAG-2 gene product is required for Sμ-Sɛ heavy chain class switching. Immunity 5, 319–330 (1996).
    Article CAS Google Scholar

Download references