Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å (original) (raw)
Calabi, F., Jarvis, J.M., Martin, L. & Milstein, C. Two classes of CD1 genes. Eur. J. Immunol.19, 285–292 (1989). ArticleCAS Google Scholar
Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science278, 1626–1629 (1997). ArticleCAS Google Scholar
Beckman, E.M. et al. CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J. Immunol.157, 2795–2803 (1996). CAS Google Scholar
Porcelli, S., Morita, C.T. & Brenner, M.B. CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature360, 593–597 (1992). ArticleCAS Google Scholar
Vincent, M.S. et al. CD1-dependent dendritic cell instruction. Nat. Immunol.3, 1163–1168 (2002). ArticleCAS Google Scholar
Rosat, J.P. et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ αβ T cell pool. J. Immunol.162, 366–371 (1999). CAS Google Scholar
Moody, D.B. et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science278, 283–286 (1997). ArticleCAS Google Scholar
Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol.29, 1667–1675 (1999). ArticleCAS Google Scholar
Shamshiev, A. et al. Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med.195, 1013–1021 (2002). ArticleCAS Google Scholar
Moody, D.B. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature404, 884–888 (2000). ArticleCAS Google Scholar
Beckman, E.M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature372, 691–694 (1994). ArticleCAS Google Scholar
Moody, D.B. & Porcelli, S.A. Intracellular pathways of CD1 antigen presentation. Nat. Rev. Immunol.3, 11–22 (2003). ArticleCAS Google Scholar
Sugita, M. et al. Separate pathways for antigen presentation by CD1 molecules. Immunity11, 743–752 (1999). CAS Google Scholar
Moody, D.B. et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat. Immunol.3, 435–442 (2002). ArticleCAS Google Scholar
Jackman, R.M. et al. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity8, 341–351 (1998). CAS Google Scholar
Chiu, Y.H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med.189, 103–110 (1999). ArticleCAS Google Scholar
Sugita, M., van Der Wel, N., Rogers, R.A., Peters, P.J. & Brenner, M.B. CD1c molecules broadly survey the endocytic system. Proc. Natl. Acad. Sci. USA97, 8445–8450 (2000). ArticleCAS Google Scholar
Sugita, M. et al. Failure of trafficking and antigen presentation by CD1 in AP-3- deficient cells. Immunity16, 697–706 (2002). ArticleCAS Google Scholar
Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature341, 447–450 (1989). ArticleCAS Google Scholar
Zeng, Z. et al. Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science277, 339–345 (1997). ArticleCAS Google Scholar
Gadola, S.D. et al. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol.3, 721–726 (2002). ArticleCAS Google Scholar
Jackson, M.R., Song, E.S., Yang, Y. & Peterson, P.A. Empty and peptide-containing conformers of class I major histocompatibility complex molecules expressed in Drosophila melanogaster cells. Proc. Natl. Acad. Sci. USA89, 12117–12121 (1992). ArticleCAS Google Scholar
Matsumura, M., Saito, Y., Jackson, M.R., Song, E.S. & Peterson, P.A. In vitro peptide binding to soluble empty class I major histocompatibility complex molecules isolated from transfected Drosophila melanogaster cells. J. Biol. Chem.267, 23589–23595 (1992). CASPubMed Google Scholar
Matsumura, M., Fremont, D.H., Peterson, P.A. & Wilson, I.A. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science257, 927–934 (1992). ArticleCAS Google Scholar
Madden, D.R. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol.13, 587–622.(1995). ArticleCAS Google Scholar
O×Brien, J.S., Fillerup, D.L. & Mead, J.F. Quantification and fatty acid and fatty aldehyde composition of ethanolamine, choline, and serine glycerophosphatides in human cerebral grey and white matter. J. Lipid. Res.5, 329–338 (1964). Google Scholar
Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet.11, 281–296 (1991). ArticleCAS Google Scholar
O'Callaghan, C.A. et al. Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. Mol. Cell.1, 531–541 (1998). ArticleCAS Google Scholar
Khan, A.R., Baker, B.M., Ghosh, P., Biddison, W.E. & Wiley, D.C. The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J. Immunol.164, 6398–6405 (2000). ArticleCAS Google Scholar
Speir, J.A., Abdel-Motal, U.M., Jondal, M. & Wilson, I.A. Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. Immunity10, 51–61 (1999). ArticleCAS Google Scholar
Lerche, M.H., Kragelund, B.B., Bech, L.M. & Poulsen, F.M. Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure5, 291–306 (1997). ArticleCAS Google Scholar
Young, A.C. et al. Structural studies on human muscle fatty acid binding protein at 1.4 Å resolution: binding interactions with three C18 fatty acids. Structure2, 523–534 (1994). ArticleCAS Google Scholar
Manolova, V., Hirabayashi, Y., Mori, L. & Libero, G.D. CD1a and CD1b surface expression is independent from de novo synthesized glycosphingolipids. Eur. J. Immunol.33, 29–37 (2003). ArticleCAS Google Scholar
Sidobre, S. & Kronenberg, M. CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods268, 107–121 (2002). ArticleCAS Google Scholar
Otwinowski, Z. & Minor, W. HKL: Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCAS Google Scholar
Vagin, A.A. & Teplyakov, A. MOLREP:an automated program for molecular replacement. J. Appl. Crystallogr.30, 1022–1025 (1997). ArticleCAS Google Scholar
Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr.D54, 905–921 (1998). Google Scholar
Pannu, N.S. & Read, R.J. Improved structure refinement through maximum likelyhood. Acta Crystallogr.A52, 659–668 (1996). ArticleCAS Google Scholar
Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature355, 472–475 (1992). Article Google Scholar
Jones, T.A., Cowan, S., Zou, J.Y. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr.A47, 110–119 (1991). ArticleCAS Google Scholar
Kleywegt, G.J. & Jones, T.A. Databases in protein crystallography. Acta Crystallogr.D54, 1119–1131 (1998). CAS Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr.D53, 240–255 (1997). CAS Google Scholar
CCP4. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr.D50, 760–763 (1994).
Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr.D57, 122–133 (2001). CAS Google Scholar
Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr.26, 283–291 (1993). ArticleCAS Google Scholar
Connolly, M.L. The molecular surface package. J. Mol. Graph.11, 139–141 (1993). ArticleCAS Google Scholar
Gelin, B.R. & Karplus, M. Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. Biochemistry18, 1256–1268 (1979). ArticleCAS Google Scholar
Sheriff, S., Hendrickson, W.A. & Smith, J.L. Structure of myohemerythrin in the azidomet state at 1.7/1.3 Å resolution. J. Mol. Biol.197, 273–296 (1987). ArticleCAS Google Scholar
Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of proteins. J. Appl. Crystallogr.24, 946–950 (1991). Article Google Scholar
Esnouf, R.M. An extensively modified version of Molscript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model.15, 132–134 (1997). ArticleCAS Google Scholar
Howlin, B., Butler, D.S., Moss, D.S., Harris, G.W. & Driessen, H.P.C. TLSANL: TLS parameter analysis program for segmented anisotropic refinement of macromolecular structures. J. Appl. Crystallogr.26, 622–624 (1993). Article Google Scholar