Methylation determines fibroblast activation and fibrogenesis in the kidney (original) (raw)
Eddy, A.A. Molecular insights into renal interstitial fibrosis. J. Am. Soc. Nephrol.7, 2495–2508 (1996). CASPubMed Google Scholar
Kuncio, G.S., Neilson, E.G. & Haverty, T. Mechanisms of tubulointerstitial fibrosis. Kidney Int.39, 550–556 (1991). ArticleCASPubMed Google Scholar
Strutz, F. & Zeisberg, M. Renal fibroblasts and myofibroblasts in chronic kidney disease. J. Am. Soc. Nephrol.17, 2992–2998 (2006). ArticleCASPubMed Google Scholar
Müller, G.A. & Rodemann, H.P. Characterization of human renal fibroblasts in health and disease: I. Immunophenotyping of cultured tubular epithelial cells and fibroblasts derived from kidneys with histologically proven interstitial fibrosis. Am. J. Kidney Dis.17, 680–683 (1991). ArticlePubMed Google Scholar
Rodemann, H.P. & Müller, G.A. Characterization of human renal fibroblasts in health and disease: II. In vitro growth, differentiation, and collagen synthesis of fibroblasts from kidneys with interstitial fibrosis. Am. J. Kidney Dis.17, 684–686 (1991). ArticleCASPubMed Google Scholar
Weber, K.T. & Brilla, C.G. Factors associated with reactive and reparative fibrosis of the myocardium. Basic Res. Cardiol.87, Suppl 1, 291–301 (1992). PubMed Google Scholar
Lafyatis, R. Targeting fibrosis in systemic sclerosis. Endocr. Metab. Immune Disord. Drug Targets6, 395–400 (2006). ArticleCASPubMed Google Scholar
Lin, J. et al. Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat. Med.11, 387–393 (2005). ArticleCASPubMed Google Scholar
Santini, V., Kantarjian, H.M. & Issa, J.P. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann. Intern. Med.134, 573–586 (2001). ArticleCASPubMed Google Scholar
Bird, A.P. & Wolffe, A.P. Methylation-induced repression—belts, braces, and chromatin. Cell99, 451–454 (1999). ArticleCASPubMed Google Scholar
Feinberg, A.P. & Vogelstein, B. Alterations in DNA methylation in human colon neoplasia. Semin. Surg. Oncol.3, 149–151 (1987). ArticleCASPubMed Google Scholar
Herman, J.G. & Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med.349, 2042–2054 (2003). ArticleCASPubMed Google Scholar
Clark, S.J., Statham, A., Stirzaker, C., Molloy, P.L. & Frommer, M. DNA methylation: bisulphite modification and analysis. Nat. Protoc.1, 2353–2364 (2006). ArticleCASPubMed Google Scholar
Gius, D. et al. The epigenome as a molecular marker and target. Cancer104, 1789–1793 (2005). ArticleCASPubMed Google Scholar
Downward, J. Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer3, 11–22 (2003). ArticleCASPubMed Google Scholar
Mitin, N., Rossman, K.L. & Der, C.J. Signaling interplay in Ras superfamily function. Curr. Biol.15, R563–R574 (2005). ArticleCASPubMed Google Scholar
Walker, S.A. et al. Identification of a Ras GTPase-activating protein regulated by receptor-mediated Ca2+ oscillations. EMBO J.23, 1749–1760 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bos, J.L. Ras oncogenes in human cancer: a review. Cancer Res.49, 4682–4689 (1989). CASPubMed Google Scholar
Arun, D. & Gutmann, D.H. Recent advances in neurofibromatosis type 1. Curr. Opin. Neurol.17, 101–105 (2004). ArticleCASPubMed Google Scholar
Kolfschoten, I.G. et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell121, 849–858 (2005). ArticleCASPubMed Google Scholar
Jin, H. et al. Epigenetic silencing of a Ca2+-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. Proc. Natl. Acad. Sci. USA104, 12353–12358 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gazin, C., Wajapeyee, N., Gobeil, S., Virbasius, C.M. & Green, M.R. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature449, 1073–1077 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lloyd, C.M. et al. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med.185, 1371–1380 (1997). ArticleCASPubMedPubMed Central Google Scholar
Zeisberg, M. et al. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med.9, 964–968 (2003). ArticleCASPubMed Google Scholar
Witzgall, R., Brown, D., Schwarz, C. & Bonventre, J.V. Localization of proliferating cell nuclear antigen, vimentin, c-Fos and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest.93, 2175–2188 (1994). ArticleCASPubMedPubMed Central Google Scholar
Oliver, J.A., Maarouf, O., Cheema, F.H., Martens, T.P. & Al-Awqati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest.114, 795–804 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hendry, B.M. & Sharpe, C.C. Targeting Ras genes in kidney disease. Nephron93, e129–e133 (2003). CASPubMed Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 (1993). ArticleCASPubMed Google Scholar
Okano, M., Bell, D.W., Haber, D.A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999). ArticleCASPubMed Google Scholar
Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69, 915–926 (1992). ArticleCASPubMed Google Scholar
Bottinger, E.P. & Bitzer, M. TGF-β signaling in renal disease. J. Am. Soc. Nephrol.13, 2600–2610 (2002). ArticlePubMed Google Scholar
Border, W.A. & Noble, N.A. Targeting TGF-β for treatment of disease. Nat. Med.1, 1000–1001 (1995). ArticleCASPubMed Google Scholar
Strutz, F. et al. TGF-β1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int.59, 579–592 (2001). ArticleCASPubMed Google Scholar
Basile, D.P. et al. Identification of persistently altered gene expression in the kidney after functional recovery from ischemic acute renal failure. Am. J. Physiol. Renal Physiol.288, F953–F963 (2005). ArticleCASPubMed Google Scholar
Forbes, J.M., Leaker, B., Hewitson, T.D., Becker, G.J. & Jones, C.L. Macrophage and myofibroblast involvement in ischemic acute renal failure is attenuated by endothelin receptor antagonists. Kidney Int.55, 198–208 (1999). ArticleCASPubMed Google Scholar
Villanueva, S., Cespedes, C. & Vio, C.P. Ischemic acute renal failure induces the expression of a wide range of nephrogenic proteins. Am. J. Physiol. Regul. Integr. Comp. Physiol.290, R861–R870 (2006). ArticleCASPubMed Google Scholar
Ding, M. et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat. Med.12, 1081–1087 (2006). ArticleCASPubMed Google Scholar
Rothenpieler, U.W. & Dressler, G.R. Pax-2 is required for mesenchyme-to-epithelium conversion during kidney development. Development119, 711–720 (1993). CASPubMed Google Scholar
Khwaja, A., Sharpe, C.C., Noor, M., Kloog, Y. & Hendry, B.M. The inhibition of human mesangial cell proliferation by _S_-trans, trans-farnesylthiosalicylic acid. Kidney Int.68, 474–486 (2005). ArticleCASPubMed Google Scholar
Zaidi, N. et al. A new approach for distinguishing cathepsin E and D activity in antigen-processing organelles. FEBS J.274, 3138–3149 (2007). ArticleCASPubMed Google Scholar
Zeisberg, E.M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med.13, 952–961 (2007). ArticleCASPubMed Google Scholar
Zeisberg, E.M., Potenta, S.E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol.19, 2282–2287 (2008). ArticlePubMedPubMed Central Google Scholar
Chatterjee, P.K. et al. Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat. Kidney Int.59, 2073–2083 (2001). ArticleCASPubMed Google Scholar