Dissolving polymer microneedle patches for influenza vaccination (original) (raw)
Centers for Disease Control and Prevention. Influenza activity—United States and worldwide, 2007–08 season. MMWR Morb. Mortal. Wkly. Rep.57, 692–697 (2008).
Prausnitz, M.R., Mikszta, J.A., Cormier, M. & Andrianov, A.K. Microneedle-based vaccines. Curr. Top. Microbiol. Immunol.333, 369–393 (2009). CASPubMedPubMed Central Google Scholar
Glenn, G.M. & Kenney, R.T. Mass vaccination: solutions in the skin. Curr. Top. Microbiol. Immunol.304, 247–268 (2006). CASPubMed Google Scholar
Belshe, R.B. et al. Serum antibody responses after intradermal vaccination against influenza. N. Engl. J. Med.351, 2286–2294 (2004). ArticleCASPubMed Google Scholar
Holland, D. et al. Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J. Infect. Dis.198, 650–658 (2008). ArticlePubMed Google Scholar
Van Damme, P. et al. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine27, 454–459 (2009). ArticlePubMed Google Scholar
Hickling, J. & Jones, R. Intradermal Delivery of Vaccines: A Review of the Literature and the Potential for Development for Use in Low- and Middle-Income Countries. (Program for Appropriate Technology in Health, Ferney Voltaire, France, 2009). Google Scholar
Flynn, P.M. et al. Influence of needle gauge in Mantoux skin testing. Chest106, 1463–1465 (1994). ArticleCASPubMed Google Scholar
Gill, H.S., Denson, D.D., Burris, B.A. & Prausnitz, M.R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain24, 585–594 (2008). ArticlePubMedPubMed Central Google Scholar
Mikszta, J.A. et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med.8, 415–419 (2002). ArticleCASPubMed Google Scholar
Widera, G. et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine24, 1653–1664 (2006). ArticleCASPubMed Google Scholar
Zhu, Q. et al. Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc. Natl. Acad. Sci. USA106, 7968–7973 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y.C. et al. Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J. Infect. Dis.201, 190–198 (2010). ArticleCASPubMed Google Scholar
Miyano, T. et al. Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices7, 185–188 (2005). ArticleCASPubMed Google Scholar
Ito, Y., Yoshimitsu, J., Shiroyama, K., Sugioka, N. & Takada, K. Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J. Drug Target.14, 255–261 (2006). ArticleCASPubMed Google Scholar
Sullivan, S.P., Murthy, N. & Prausnitz, M.R. Minimally invasive protein delivery with rapidly dissolving microneedles. Adv. Mater.20, 933–938 (2008). ArticleCASPubMedPubMed Central Google Scholar
Robinson, B.V. PVP: A Critical Review of the Kinetics and Toxicology of Polyvinylpyrrolidone (Povidone). (Lewis Publishers, Chelsea, Michigan, 1990). Google Scholar
Park, J.-H., Allen, M.G. & Prausnitz, M.R. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J. Control. Release104, 51–66 (2005). ArticleCASPubMed Google Scholar
Bronaugh, R.L., Stewart, R.F. & Congdon, E.R. Methods for in vitro percutaneous absorption studies II. Animal models for human skin. Toxicol. Appl. Pharmacol.62, 481–488 (1982). ArticleCASPubMed Google Scholar
McGill, J. & Legge, K.L. Cutting edge: contribution of lung-resident T cell proliferation to the overall magnitude of the antigen-specific CD8 T cell response in the lungs following murine influenza virus infection. J. Immunol.183, 4177–4181 (2009). ArticleCASPubMed Google Scholar
Strengell, M., Sareneva, T., Foster, D., Julkunen, I. & Matikainen, S. IL-21 up-regulates the expression of genes associated with innate immunity and TH1 response. J. Immunol.169, 3600–3605 (2002). ArticlePubMed Google Scholar
Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science298, 1630–1634 (2002). ArticleCASPubMed Google Scholar
Ravin, H.A., Seligman, A.M. & Fine, J. Polyvinyl pyrrolidone as a plasma expander; studies on its excretion, distribution and metabolism. N. Engl. J. Med.247, 921–929 (1952). ArticleCASPubMed Google Scholar
Katsikis, P.D., Schoenberger, S.P. & Pulendran, B. Probing the 'labyrinth' linking the innate and adaptive immune systems. Nat. Immunol.8, 899–901 (2007). ArticleCASPubMed Google Scholar
Kupper, T.S. & Fuhlbrigge, R.C. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol.4, 211–222 (2004). ArticleCASPubMedPubMed Central Google Scholar
Miller, L.S. & Modlin, R.L. Toll-like receptors in the skin. Semin. Immunopathol.29, 15–26 (2007). ArticleCASPubMed Google Scholar
Skountzou, I., Quan, F.S., Jacob, J., Compans, R.W. & Kang, S.M. Transcutaneous immunization with inactivated influenza virus induces protective immune responses. Vaccine24, 6110–6119 (2006). ArticleCASPubMed Google Scholar
Amorij, J.P. et al. Rational design of an influenza subunit vaccine powder with sugar glass technology: preventing conformational changes of haemagglutinin during freezing and freeze-drying. Vaccine25, 6447–6457 (2007). ArticleCASPubMed Google Scholar
Compans, R.W. Hemagglutination-inhibition: rapid assay for neuraminic acid-containing viruses. J. Virol.14, 1307–1309 (1974). CASPubMedPubMed Central Google Scholar
Reed, L.J. & Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Hyg.27, 493–497 (1938). Google Scholar